Где взять пушку гаусса. Как сделать электромагнитную пушку гаусса своими руками в домашних условиях

Гаусс ган или просто пушка Гаусса - мечта почти любого начинающего радиолюбителя. Сегодня будет рассмотрен вариант мощного Гаусс гана на основе очень простого, но к тому же времени очень мощного для своего размера преобразователя.

Основа: ШИМ-контролер на микросхеме UC3845. Достаточно распространенная микросхема, применяется в импульсных блоках питания в качестве задающего генератора. Единственный недостаток микросхемы это то, что она начинает работать только тогда, когда номинал питающего напряжения выше 9 вольт, а максимальная величина не превосходит номинала 18 вольт. Таким образом на базу полевого транзистора поступает сигнал с частотой 60 килогерц, напряжение сигнала порядка 8 вольт, что достаточно для открывания перехода мощного полевика.

Транзистор обратной проводимости, отлично справляются полевые N - канальные транзисторы типа IRF3205 и IRL3705, хотя можно поставить и широко распространенную IRFZ44 , но он достаточно быстро перегревается. Хотя и рекомендованные транзисторы нужно укрепить на небольшой теплоотвод. Схема отключается, когда конденсаторы заряжены до номинала 300 вольт, тогда начинает светится белый светодиод. Преобразователь имеет мощность в 70 - 80 ватт, но жрет тоже не мало... 9 ампер, в пике до 12 ампер. На счет диодов - оба диода в схеме нужно использовать быстродействующие или ультрабыстрые, аналогов много и совсем не обязательно использовать указанные диоды, но с ними схема работает отлично. Резистор 820 ом - подобрать с мощностью 1 - 2 ватт, поскольку он тоже перегревается.

Трансформатор намотан на чашке, хотя можно использовать ферритовые трансформаторы от компьютерных БП (тот, что побольше). Первичная обмотка содержит 5 витков, намотана проводом 0,7 мм в 3 жила. Вторичная обмотка содержит 120 витков провода с диаметром 0,5 - 0,8 мм.

Питать преобразователь можно любым источником постоянного напряжения, конечно если источник может дать нужные параметры для питания преобразователя. Очень советую использовать аккумулятор от бесперебойника. Для уменьшения размеров можно использовать никель - кадмиевые или никель металл гидридные батарейки с емкостью от 1000мА.

Сама пушка, выполнена на пластмассовой трубе с внутренним диаметром 9 мм, у меня к счастью была масса железных стержней, которые свободно входили и выходили в трубу, как в народе говорят "тютелька в тютельку". Стержни были обрезаны 3 см в длину и обострены подобно гвоздям. Обмотка содержит 50 витков провода с диаметром 0,9 - 1,2 мм.

Конденсаторы: Хотя преобразователь отключается, как только напряжение на конденсаторах ровно 300 вольт, но тем не менее использованы конденсаторы с напряжением 400 вольт. Это даже хорошо, что есть запас напряжения, в данном случае на 100 вольт. Использовано 4 конденсатора с суммарной емкостью 13200 микрофарад (каждый по 3300 микрофарад). Полная зарядка емкости происходит через 3 - 4 секунды после включения преобразователя.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
ШИМ контроллер

UC3845

1 В блокнот
Q1 MOSFET-транзистор

IRF3205

1 В блокнот
D1 Выпрямительный диод

UF4007

1 Аналог: BYV26E В блокнот
D2 Выпрямительный диод

UF5408

1 Аналог: UF5408, BY399, BR207 В блокнот
LED1 Светодиод

АЛ307БМ

1 В блокнот
C1 Конденсатор 4.7 нФ 1 В блокнот
C2, C3 10 мкФ 1 В блокнот
C2* Электролитический конденсатор 4700 мкФ 1 В блокнот
С2** Электролитический конденсатор 1500 мкФ 350 В 1 В блокнот
C4 Конденсатор 22 нФ 1 В блокнот
C5 Конденсатор 470 нФ 1 В блокнот
C6 Конденсатор 470 пФ 1 В блокнот
R1 Резистор

6.8 кОм

1 В блокнот
R2 Резистор

620 кОм

1 В блокнот
R3 Резистор

5.1 кОм

1 В блокнот
R4 Резистор

680 Ом

1
25 марта 2015 в 15:42

Электромагнитная пушка Гаусса на микроконтроллере

  • Разработка робототехники

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером.

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

PORTA |=(1<<1); // катушка 1
_delay_ms(350); / / время работы

Прошиваете микроконтроллер, и запускаете программу на микроконтроллере. Усилия катушки должно хватать на то, чтобы втянуть снаряд и придать начальное ускорение. Добившись максимального вылета снаряда, подстраивая время работы катушки в программе микроконтроллера, подключаете вторую катушку и также настраиваете по времени, добиваясь еще большей дальности полета снаряда. Соответственно, первая катушка остается включенной.

PORTA |=(1<<1); // катушка 1
_delay_ms(350);
PORTA &=~(1<<1);
PORTA |=(1<<2); // катушка 2
_delay_ms(150);

Таким способом настраиваете работу каждой электромагнитной катушки, подключая их по порядку. По мере увеличения количества электромагнитных катушек в устройстве электромагнитной пушке Гаусса скорость и, соответственно, дальность снаряда должны также увеличиваться.

Данную кропотливую процедуру настройки каждой катушки можно избежать. Но для этого придется модернизировать устройство самой электромагнитной пушки, установив датчики между электромагнитными катушками для отслеживания перемещения снаряда от одной катушки к другой. Датчики в сочетании с микроконтроллером позволят не только упростить процесс настройки, но и увеличат дальность полета снаряда. Данные навороты я не стал делать и усложнять программу микроконтроллера. Целью было реализовать интересный и несложный проект с применением микроконтроллера. Насколько он интересен, судить, конечно, вам. Скажу честно, я радовался, как ребенок, «молотя» из данного устройства, и у меня созрела идея более серьезного устройства на микроконтроллере. Но это уже тема для другой статьи.

Программа и схема -

Практически каждый житель СНГ хотя бы слышал про такую замечательную игру как «Сталкер», ведь она нам рассказывает про альтернативную реальность, в которой после взрыва на Чернобыльской атомной электростанции произошел разрыв ноосферы, от чего все, кто там находился, невозвратно изменились, как физически, так и ментально. Появились мутанты, артефакты, а также множество исследовательских центров, изучающих аномальную природу региона. Одним из их достижений стала пушка Гаусса. В данной статье мы подробно расскажем, где найти данную пушку в разных модах, частях «Сталкера», а также немного истории.

История создания

Впервые данный вид винтовки появился еще в первой части «Сталкера», которая называлась «Тень Чернобыла». На предпоследней локации «Припять» игрока встречали множественные силы противника, они были везде, даже на крышах заброшенных домов, с которых по нам и вели огонь из Гаусса. Винтовка сама по себе невероятно редкая, а если вы правильно не убили "Монолитовца", то смело можем заявить, что вы ее больше в игре не потрогаете. Также есть вероятность того, что труп данного бойца упадет, но патронов к винтовке совсем не будет. Все это обуславливается тем, что разработка первой части велась в невероятной спешке, многие виды оружия были вырезаны, не говоря уже про локации, машины и многое другое.

Если говорить про упоминания о данной винтовке, то на локации «Темная Долина» мы прямо напротив базы бандитов могли спасти сталкера от кровососа, за что он нас благодарит информацией, мол, на свиноферме продают пушку Гаусса всего за 800 рублей. Мы туда приходим, отдаем сталкерам 800 рублей, которые в самом начале игры могут изменить многое, но взамен нам ничего не дают, а даже больше: нас выгоняют с территории свинофермы, т.к. у них никакой винтовки Гаусса нет, а эти деньги пойдут на благотворительность. После этого можно спокойно их убить, а со сталкера «Упырь» выпадет специальная бесшумная винтовка «Гадюка».

Это все происходило в первой части, но вот уже во второй, название которой «Чистое Небо», можно вполне легко найти данную винтовку. Право на ее приобретение дается игрокам, чьи поступки являются безупречными (статистику можно смотреть в ПДА), после чего каждый торговец с радостью вам продаст Гаусс и экзоскелет первого поколения.

«Зов Припяти» попытался быть максимально похожим на первую часть, что, собственно, и получилось, ведь в данной части винтовка достается опять же с крыши и опять же с трупа павшего бойца «Монолит». После ее поднятия активируется специальный квест, о котором мы расскажем чуточку позже.

Реальные аналоги

К счастью, а может, и к беде, но такое оружие существует в современном мире, хоть и является достаточно стационарным. В серии игр «Сталкер» нам дали понять, что пушка Гаусса является мобильной и столь убийственной лишь из-за автономного источника питания. Мощность игровой и реальной пушки немного отличаются. Но они обе все равно невероятно убийственные.

В реальной жизни имя данной пушки - «Рельсотрон», из одного названия можно понять, что в стволе данной пушки содержится два длинных магнита, а в самом начале снаряд, который не является диэлектриком, т.к. не будет реагировать на колоссальное магнитное поле. Магнитное поле огромной мощности создается благодаря высокому напряжению, способному обеспечивать 19 тысяч домов, а это маленький город.

Во время полета снаряд сталкивается с препятствием, а из-за невероятно большой скорости (больше 1.5 километра в секунду) ему не требуется взрывчатый элемент, ведь одной кинетической энергии хватает не только для невероятного по силе удара, но и для прошивания насквозь практически любой преграды. «Рельсотроном» планируют оснастить боевые корабли ВСМ США примерно к 2020 году, но сейчас идут полномасштабные разработки источника питания, способного заряжать столь убийственную пушку. Про реальный образец рассказали, теперь необходимо выяснить, где найти Гаусс-пушку. К слову, пушку можно получить читерным образом, но это мы не рекомендуем делать, т.к. это нарушает игровой процесс, в отличие от пользовательских модификаций, в которых данная винтовка реализована по полной. Подобных модов множество, а найти их не составит труда.

Где найти в "Зове Припяти" пушку Гаусса?

Для активации данного невероятно интересного квеста вам потребуется для начала попасть в «Припять», но перед этим собрать команду из «Гиви», бывшего «Монолитовца» и алкоголика «Долговца», который сидит в башне около станции «Янов». Только вот каждому из них потребуется ваша помощь. Одного вытащить из долгов, другому - найти смысл жизни, а с третьим - хорошо выпить. Все квесты невероятно интересные, поэтому рекомендуем их пройти, после этого можете позвать их с собой в поход через заброшенные туннели под Припятью. По прибытии вас встретит отряд военных, благодаря которым и можно получить данную пушку.

После переговоров с военными вас отправляют на миссию, где надо освободить старую больницу от «Монолитовцев». После уничтожения половины противников будет сообщение, что на крыше появился снайпер с необычной винтовкой. Убиваете снайпера, забираете пушку Гаусса и идете к генералу на химчистку. После недолгих раздумий вас отправляют к Кардану на корабль.

Кардан рассказывает, что во времена СССР был ученым и разрабатывал данную пушку, а для ее починки после передряги в Припяти нам потребуется спуститься в лабораторию около трансформаторов. После диалога он любезно отдает нам ключ-карту, и мы спускаемся в подземелье за чертежами винтовки Гаусса. Отдаем все документы Кардану, и он нам отдает отремонтированную винтовку.

Где найти в "Тенях Чернобыля" пушку Гаусса?

В данной части все обстоит куда сложнее, ведь шанс заполучить пушку будет практически на предпоследней локации - в Припяти. Перед заброшенным стадионом в вас будут стрелять «Монолитовцы» из Гаусса. Каждое попадание по вам будет критическим, а если в голову, - то смертельным. Стрелять им в лоб категорически не рекомендуется, ведь из-за этого пушка упадет на крышу, на которую никаким образом нельзя залезть, поэтому потребуется пробегать от укрытия к укрытию, после чего стрелять в бок данному бойцу. Боец вместе с винтовкой падает на землю. Если вы очень удачливый, то в рюкзаке трупа найдете патроны. К слову, патроны найти практически невозможно, лишь из очень редких тайников. У торговцев их не найти.

Где найти пушку в «Народной Солянке»

Вопросом того, где найти Гаусс-пушку сталкера Прокопенко, задаются многие, ведь разработчики из АМК сделали данный квест весьма и весьма сложным. Для получения вам потребуется сначала получить пропуск на территорию долга, после чего подойти к Петренко и поговорить с ним на разные темы, после чего она нам расскажет, что где-то в Темной Долине пропал пистолет Гаусса. Бежим на свиноферму, о которой говорили выше, идем к бочке на опоре, которая находится прямо напротив каменного забора, а под бочкой и будет бесхозно лежать пистолет. Это можно понять и самому, если открыть ПДА, а в инструкции к квесту посмотреть на скриншот.

Можно ли улучшить винтовку Гаусса?

Как уже говорилось, все части «Сталкера» создавались в невероятной спешке, от чего и не все возможности были реализованы, в том числе модификации оружия. Да, в "Зове Припяти" и "Чистом небе" есть механизм улучшения оружия, но не всех единиц. Данную проблему с радостью решают пользовательские модификации. В «Народной Солянке» 2017 года можно у любого торговца купить специальный кейс с инструментами, или пойти в Бар, где два профессора улучшат характеристики не только Гаусс-пушки, но и других редких экземпляров оружия.

Какие боеприпасы нужны?

В "Сталкере. Зов Припяти" Гаусс-пушка имеет целых 2 вида боеприпасов: качественные, т.е. производственные, кустарные. Различаются два данных вида боеприпаса для одной и той же винтовки только силой пробития, а также ценой, что и заставляет обратить игроков внимание на второй вариант. Заводские можно приобрести у сталкеров примерно за 2000 рублей, если вы в хороших отношениях с продавцом. Кустарные может создавать для нас Кардан после прохождения квеста, о котором мы говорили выше. Он будет за определенную плату в виде водки создавать для нас кустарные боеприпасы.

В заключение

Надеемся, что после прочтения данной статьи вы поняли, что такое пушка Гаусса. Данное оружие является самым мощным, поэтому спрос на него невероятно большой. Если по каким-то причинам у вас не получилось достать Гаусс-винтовку, то вы можете подправить конфигурацию игры, после чего она будет продаваться у желаемого торговца.

Информация предоставлена исключительно в образовательных целях!
Администратор сайта не несет ответственности за возможные последствия использования предоставленной информации.

ЗАРЯЖЕННЫЕ КОНДЕНСАТОРЫ СМЕРТЕЛЬНО ОПАСНЫ!

Электромагнитная пушка (Гаусс-ган, англ. coilgun ) в ее классическом варианте представляет собой устройство, использующее свойство ферромагнетиков втягиваться в область более сильного магнитного поля для ускорения феромагнитного "снаряда".

Мой гаусс-ган:
вид сверху:


вид сбоку:


1 - разъем для подключения дистанционного спуска
2 - переключатель "заряд аккумулятора/работа"
3 - разъем для подключения к звуковой карте компьютера
4 - переключатель "заряд конденсатора/выстрел"
5 - кнопка аварийного разряда конденсатора
6 - индикатор "Заряд аккумулятора"
7 - индикатор "Работа"
8 -индикатор "Заряд конденсатора"
9 - индикатор "Выстрел"

Схема силовой части пушки Гаусса:

1 - ствол
2 - защитный диод
3 - катушка
4 - ИК-светодиоды
5 - ИК-фототранзисторы

Основные элементы конструкции моей электромагнитной пушки :
аккумулятор -
я использую два литий-ионных аккумулятора SANYO UR18650A формата 18650 от ноутбука емкостью 2150 мАч, включенных последовательно:
...
Предельное напряжение разряда этих аккумуляторов составляет 3,0 В.

преобразователь напряжения для питания цепей управления -
Напряжение с батарей поступает на повышающий преобразователь напряжения на микросхеме 34063, который повышает напряжение до 14 В. Затем напряжение поступает на преобразователь для заряда конденсатора, а стабилизированное до 5 В микросхемой 7805 - для питания цепи управления.

преобразователь напряжения для заряда конденсатора -
повышающий преобразователь на базе таймера 7555 и MOSFET -транзистора ;
- это N -канальный MOSFET -транзистор в корпусе TO-247 с максимально допустимым напряжением "сток-исток" V DS = 500 вольт, максимальным импульсным током стока I D = 56 ампер и типичным значением сопротивления "сток-исток" в открытом состоянии R DS(on) = 0,33 ома.

Индуктивность дросселя преобразователя влияет на его работу:
слишком малая индуктивность определяет низкую скорость заряда конденсатора;
слишком высокая индуктивность может привести к насыщению сердечника.

В качестве генератора импульсов (oscillator circuit ) для преобразователя (boost converter ) можно использовать микроконтроллер (например, популярный Arduino ), который позволит реализовать широтно-импульсную модуляцию (ШИМ, PWM ) для управления скважностью импульсов.

конденсатор (coil cap(acitor)) -
электролитический конденсатор на напряжение несколько сотен вольт.
Ранее я использовал конденсатор К50-17 от советской внешней фотовспышки емкостью 800 мкФ на напряжение 300 В:

Недостатком этого конденсатора являются, по моему мнению, невысокое рабочее напряжение, повышенный ток утечки (приводит к более долгой зарядке) и возможно завышенная емкость.
Поэтому я перешел на использование импортных современных конденсаторов:

SAMWHA на напряжение 450 В емкостью 220 мкФ серии HC . HC - это стандартная серия конденсаторов SAMWHA , существуют и другие серии: HE - работающие в более широком температурном диапазоне, HJ - с увеличенным временем жизни;

PEC на напряжение 400 В емкостью 150 мкФ.
Также я испытывал третий конденсатор на напряжение 400 В емкостью 680 мкФ, приобретенный в интернет-магазине dx.com -

В итоге я остановился на использовании конденсатора PEC на напряжение 400 В емкостью 150 мкФ .

Для конденсатора также важно его эквивалентное последовательное сопротивление (ESR ).

переключатель -
силовой переключатель SA предназачен для коммутирования заряженного конденсатора C на катушку L :

в качестве переключателя можно использовать либо тиристоры, либо IGBT -транзисторы:

тиристор -
я использую силовой тиристор ТЧ125-9-364 с управлением по катоду
внешний вид

размеры

- тиристор быстродействующий штыревого исполнения: "125" означает максимально допустимый действующий ток (125 А); "9" означает класс тиристора, т.е. повторяющееся импульсное напряжение в сотнях вольт (900 В).

Использование тиристора в качестве ключа требует подбора емкости конденсаторной батареи, так как затянутый импульс тока приведет к втягиванию пролетевшего центр катушки снаряда обратно - "suck-back effect" .

IGBT-транзистор -
применение в качестве ключа IGBT -транзистора позволяет не только замыкать, но и размыкать цепь катушки. Это позволяет прерывать ток (и магнитное поле катушки) после пролета снаряда через центр катушки, иначе бы снаряд втягивался назад, в катушку, и, следовательно, замедлялся. Но размыкание цепи катушки (резкое убывание тока в катушке) приводит к возникновению импульса высокого напряжения на катушке в соответствии с законом электромагнитной индукции $u_L = {L {{di_L} \over {dt}} }$. Для защиты ключа-IGBT -транзистора необходимо использовать дополнительные элементы:

VD tvs - диод (TVS diode ), создающий путь току в катушке при размыкании ключа и гасящий резкий бросок напряжения на катушке
R dis - разрядный резистор (discharge resistor ) - обеспечивает затухание тока в катушке (поглощает энергию магнитного поля катушки)
C rs ringing suppression capacitor ), предотвращающий возникновение импульсов перенапряжения на ключе (может дополняться резистором, образуя RC-snubber )

Я использовал IGBT -транзистор IRG48BC40F из популярной серии IRG4 .

катушка (coil) -
катушка намотана на пластиковом каркасе медным проводом. Омическое сопротивление катушки составляет 6,7 Ом. Ширина многослойной намотки (внавал) $b$ равна 14 мм, в одном слое около 30 витков, максимальный радиус - около 12 мм, минимальный радиус $D$ - около 8 мм (средний радиус $a$ - около 10 мм, высота $c$ - около 4 мм), диаметр провода - около 0,25 мм.
Параллельно катушке включен диод UF5408 (supression diode ) (пиковый ток 150 А, пиковое обратное напряжение 1000 В), гасящий импульс напряжения самоиндукции при прерывании тока в катушке.

ствол (barrel) -
сделан из корпуса шариковой ручки.

снаряд (projectile) -
Параметры испытательного снаряда - отрезок гвоздя диаметром 4 мм (диаметр ствола ~ 6 мм) и длиной 2 см (объем снаряда составляет 0,256 см 3 , а масса $m$ = 2 грамма, если принять плотность стали 7,8 г/см 3). Массу я вычислял, представив снаряд как совокупность конуса и цилиндра.

Материал снаряда обязан быть ферромагнетиком .
Также материал снаряда должен иметь как можно более высокий порог магнитного насыщения - значение индукции насыщения $B_s$ . Одним из лучших вариантов является обычное магнитомягкое железо (например, обычная незакаленная сталь Ст. 3 - Ст. 10) с индукцией насыщения 1,6 - 1,7 Тл. Гвозди изготавливают из низкоуглеродистой термически необработанной стальной проволоки (сталь марок Ст. 1 КП, Ст. 2 КП, Ст. 3 ПС, Ст. 3 КП).
Обозначение стали:
Ст. - углеродистая сталь обыкновенного качества;
0 - 10 - процентное содержание углерода, увеличенное в 10 раз. С увеличением содержания углерода снижается индукция насыщения $B_s$.

А самым эффективным является сплав "пермендюр ", но он слишком экзотический и дорогой. Этот сплав состоит из 30-50 % кобальта, 1,5-2 % ванадия и остальное - железо. Пермендюр обладает наивысшей из всех известных ферромагнетиков индукцией насыщения $B_s$ до 2,43 Тл.

Также желательно, чтобы материал снаряда имел как можно более низкую проводимость . Это связано с тем, что возникающие в переменном магнитном поле в проводящем стержне вихревые токи, которые приводят к потерям энергии.

Поэтому в качестве альтернативы снарядам - обрезкам гвоздей я испытал ферритовый стержень (ferrite rod ), взятый из дросселя с материнской платы:

Аналогичные катушки встречаются и в компьютерных блоках питания:

Внешний вид катушки с ферритовым сердечником:

Материал стержня (вероятно, никель-цинковый (Ni-Zn ) (аналог отечественных марок феррита НН/ВН) ферритовый порошок) является диэлектриком , что исключает возникновение вихревых токов. Но недостатком феррита является низкая индукция насыщения $B_s$ ~ 0,3 Тл.
Длина стержня составила 2 см:

Плотность никель-цинковых ферритов составляет $\rho$ = 4,0 ... 4,9 г/см 3 .

Сила притяжения снаряда
Вычисление силы, действующей на снаряд в пушке Гаусса, является сложной задачей.

Можно привести несколько примеров вычисления электромагнитных сил.

Сила притяжения кусочка ферромагнетика к катушке-соленоиду с ферромагнитным сердечником (например, якоря реле к катушке) определяется выражением $F = {{{{(w I)}^2} \mu_0 S} \over {2 {{\delta}^2}}}$ , где $w$ - количество витков в катушке, $I$ - ток в обмотке катушки, $S$ - площадь сечения сердечника катушки, $\delta$ - расстояние от сердечника катушки до притягиваемого кусочка. При этом пренебрегаем магнитным сопротивлением ферромагнетиков в магнитной цепи.

Сила, втягивающая ферромагнетик в магнитное поле катушки без сердечника, определяется выражением $F = {{w I} \over 2} {{d\Phi} \over {dx}}$.
В этой формуле ${{d\Phi} \over {dx}}$ - скорость изменения магнитного потока катушки $\Phi$ при перемещении кусочка ферромагнетика вдоль оси катушки (изменении координаты $x$), эту величину вычислить достаточно сложно. Вышеуказанная формула может быть переписана в виде $F = {{{I}^2} \over 2} {{dL} \over {dx}}$, где ${{dL} \over {dx}}$ - скорость изменения индуктивности катушки $L$.

Порядок выполнения выстрела из гаусс-гана
Перед выстрелом конденсатор необходимо зарядить до напряжения 400 В. Для этого необходимо включить выключатель (2) и перевести переключатель (4) в положение "ЗАРЯД". Для индикации напряжения к конденсатору через делитель напряжения подключен индикатор уровня от советского магнитофона. Для аварийного разряда конденсатора без подключения катушки служит резистор сопротивлением 6,8 кОм мощностью 2 Вт, подключаемый с помощью выключателя (5) к конденсатору. Перед выстрелом необходимо перевести переключатель (4) в положение "ВЫСТРЕЛ". Для избежания влияния дребезга контактов на формирование импульса управления кнопка "Выстрел" подключается к схеме защиты от дребезга на переключающем реле и микросхеме 74HC00N . С выхода этой схемы сигнал запускает одновибратор, который вырабатывает одиночный импульс настраиваемой длительности. Этот импульс поступает через оптопару PC817 на первичную обмотку имульсного трансформатора, обеспечивающего гальваническую развязку цепи управления от силовой цепи. Импульс, формируемый на вторичной обмотке, открывает тиристор и конденсатор разряжается через него на катушку.

Ток, протекающий через катушку при разряде, создает магнитное поле, втягивающее ферромагнитный снаряд и придающее снаряду некоторую начальную скорость. После вылета из ствола снаряд дальше летит по инерции. При этом следует учитывать то, что после пролета снаряда через центр катушки магнитное поле будет замедлять снаряд, поэтому импульс тока в катушке не должен быть затянут, иначе это приведет к уменьшению начальной скорости снаряда.

Для дистанционного управления выстрелом к разъему (1) подключается кнопка:

Определение скорости вылета снаряда из ствола
При выстреле дульная скорость и энергия сильно зависят от начального положения снаряда в стволе.
Для настройки оптимального положения необходимо измерять скорость вылета снаряда из ствола. Для этого я использовал оптический измеритель скорости - два оптических датчика (ИК-светодиоды VD1 , VD2 + ИК-фототранзисторы VT1 , VT2 ) размещены в стволе на расстоянии $l$ = 1 см друг от друга. При пролете снаряд закрывает фототранзисторы от излучения светодиодов, а компараторы на микросхеме LM358N формируют цифровой сигнал:


При перекрытии светового потока датчика 2 (ближайшего к катушке) загорается красный ("RED ") светодиод, а при перекрытии датчика 1 - зеленый ("GREEN ").

Этот сигнал преобразуется к уровню в десятые доли вольта (делители из резисторов R1 ,R3 и R2 ,R4 ) и подается на два канала линейного (не микрофонного!) входа звуковой карты компьютера с помощью кабеля с двумя штекерами - штекером, подключаемого к разъему гаусс-гана, и штекером, втыкаемым в гнездо звуковой карты компьютера:
делитель напряжения:


LEFT - левый канал; RIGHT - правый канал; GND - "земля"

штекер, подключаемый к пушке:

5 - левый канал; 1 - правый канал; 3 - "земля"
штекер, подключаемый к компьютеру:

1 - левый канал; 2 - правый канал; 3 - "земля"

Для обработки сигнала удобно использовать бесплатную программу Audacity ().
Так как на каждом канале входа звуковой карты включен последовательно с остальной цепью конденсатор, то фактически вход звуковой карты представляет собой RC -цепочку, и записанный компьютером сигнал имеет сглаженный вид:


Характерные точки на графиках:
1 - пролет передней части снаряда мимо датчика 1
2 - пролет передней части снаряда мимо датчика 2
3 - пролет задней части снаряда мимо датчика 1
4 - пролет задней части снаряда мимо датчика 2
Я определяю начальную скорость снаряда по разнице времени между точками 3 и 4 с учетом того, что расстояние между датчиками составляет 1 см.
В приведенном примере при частоте оцифровки $f$ = 192000 Гц для количества сэмплов $N$ = 160 скорость снаряда $v = {{l f} \over {N}} = {{1920} \over 160}$ составила 12 м/с.

Скорость вылета снаряда из ствола зависит от его начального положения в стволе, задаваемого смещением задней части снаряда от края ствола $\Delta$:

Для каждой емкости батареи $C$ оптимальное положение снаряда (значение $\Delta$) различно.

Для вышеописанного снаряда и емкости батареи 370 мкФ я получил следующие результаты:

При емкости батареи 150 мкФ результаты были следующими:

Максимальная скорость снаряда составила $v$ = 21,1 м/с (при $\Delta$ = 10 мм), что соответствует энергии ~0,5 Дж -

При испытании снаряда - ферритового стержня выяснилось, что он требует намного более глубокого расположения в стволе (намного большей величины $\Delta$).

Законы об оружии
В Республике Беларусь изделия с дульной энергией (muzzle energy ) не более 3 Дж приобретаются без соответствующего разрешения и не регистрируются.
В Российской Федерации изделия с дульной энергией менее 3 Дж не считаются оружием.
В Великобритании оружием не считаются изделия с дульной энергии не более 1,3 Дж.

Определение разрядного тока конденсатора
Для определения максимального разрядного тока конденсатора можно использовать график напряжения на конденсаторе при разряде. Для этого можно подключиться к разъему, на который через делитель подается напряжение на конденсаторе, уменьшенное в $n$ = 100 раз. Ток разряда конденсатора $i = {n} \cdot {C \cdot {{du} \over {dt}}} = {{{m_u} \over {m_t}} C tg \alpha}$, где $\alpha$ - угол наклона касательной к кривой напряжения конденсатора в данной точке.
Вот пример такой разрядной кривой напряжения на конденсаторе:

В этом примере $C$ = 800 мкФ, $m_u$ = 1 В/дел., $m_t$ = 6,4 мс/дел., $\alpha$ = -69,4°, $tg \alpha = -2,66 $, что соответствует току в начале разряда $i = {100} \cdot {800} \cdot {10^{-6}} \cdot {1 \over {6,4 \cdot {10^{-3}}}} \cdot (-2,66) = -33,3$ ампера.

Продолжение следует

.
В этой статье Константин, мастерская How-todo, покажет как сделать портативную пушку Гаусса.

Проект делался просто по фану, так что цели установить какие-либо рекорды в Гауссо-строении не было.








На самом деле Константину даже стало лень рассчитывать катушку.




Давайте для начала освежим в памяти теорию. Как вообще работает пушка Гаусса.

Мы заряжаем конденсатор высоким напряжением и разряжаем его на катушку из медного провода, находящуюся на стволе.

При протекании по ней тока создается мощное электромагнитное поле. Пуля из ферромагнетика втягивается внутрь ствола. Заряд конденсатора расходуется очень быстро и, в идеале, ток через катушку перестает течь в момент, когда пуля находится посередине.


После чего она продолжает лететь по инерции.

Перед тем, как перейдём к сборке следует предупредить, что работать с высоким напряжением нужно очень аккуратно.

Особенно, при использовании таких больших конденсаторов, это может быть весьма опасно.


Будем делать одноступенчатую пушку.

Во-первых, из-за простоты. Электроника в ней практически элементарна.

При изготовлении многоступенчатой системы нужно как-то коммутировать катушки, рассчитывать их, устанавливать датчики.








Во-вторых, многоступенчатый девайс просто бы не поместился в задуманный форм-фактор пистолета.






Ибо даже сейчас корпус забит полностью. За основу были взяты подобные переломные пистолеты.






Корпус будем печатать на 3D принтере. Для этого начинаем с модели.




Делаем его во Fusion360 все файлы будут в описании, если вдруг кто захочет повторить.


Постараемся как можно компактнее уложить все детали. Кстати, их совсем немного.
4 аккумулятора 18650, в сумме дающие примерно 15В.
В их посадочном месте в модели предусмотрены углубления для установки перемычек.


Которые сделаем из толстой фольги.
Модуль, повышающий напряжение аккумуляторов до примерно 400 вольт для зарядки конденсатора.


Сам конденсатор, а это банка 1000 мкФ 450 В.


И последнее. Собственно катушка.




Остальные мелочи типа тиристора, батарейки для его открытия, кнопки пуска можно расположить навесом или приклеить к стенке.


Так что отдельных посадочных мест для них не предусмотрено.
Для ствола понадобится немагнитная трубка.


Будем использовать корпус от шариковой ручки. Это значительно проще, чем допустим печатать его на принтере и затем шлифовать.


Наматываем на каркас катушки медный лакированный провод диаметром 0,8 мм, прокладывая между каждым слоем изоляцию. Каждый слой должен быть жестко зафиксирован.




Мотаем каждый слой максимально плотно, виток к витку, слоев делаем столько, сколько поместится в корпус.


Рукоять сделаем из дерева.




Модель готова, можно запускать принтер.


Почти все детали сделаны соплом 0,8 мм и только кнопка, удерживающая ствол, сделана соплом 0,4 мм.












Печать заняла около семи часов, так вышло что остался только розовый пластик.
После печати аккуратно очищаем модель от поддержек. В магазин покупаем грунт и краску.






Использовать акриловую краску не получилось, но она отказалась нормально ложится даже на грунт.
Для покраски PLA пластика существуют специальные спреи и краски, которые будут прекрасно держаться и без подготовки.
Но такие краски не нашлись, получилось корявенько конечно.

Красить пришлось наполовину высунувшись в окно.








Скажем мы что неровная поверхность - это такой стиль, и вообще так и планировалось.
Пока идет печать и сохнет краска, займемся рукоятью.
Дерева подходящей толщины не нашлось, поэтому склеим два куска паркета.




Когда он просох, придаем ему грубую форму при помощи лобзика.




Немного удивимся, что аккумуляторный лобзик без особых трудностей режет 4см древесины.


Далее при помощи дремеля и насадки скругляем углы.






Из-за малой ширины заготовки, наклон рукояти получается не совсем такой, как хотелось.


Сгладим эти неудобства эргономичностью.


Затираем неровности насадкой с наждачкой, вручную проходимся 400-й.


После зачистки покрываем маслом в несколько слоев.




Крепим рукоять на саморез, предварительно просверлив канал.




Финишной наждачкой и надфилями подгоняем все детали друг к другу, чтобы все закрывалось, держалось и цеплялось, как нужно.






Можно переходить к электронике.
Первым делом устанавливаем кнопку. Примерно прикинув так, чтобы она в будущем не особо мешалась.






Далее собираем отсек для аккумуляторов.
Для этого нарезаем фольгу на полоски и приклеиваем ее под контакты батарей. Батареи соединяем последовательно.


Все время проверяем чтобы был надежность контакта.
Когда с этим покончено, можно подключить высоковольтный модуль через кнопку, а к нему конденсатор.




Можно даже попробовать его зарядить.
Выставляем напряжение около 410 В, чтобы разряжать его на катушку без громких хлопков замыкающихся контактов, нужно использовать тиристор, который работает как выключатель.


А чтобы он замкнулся, достаточно небольшого напряжения в полтора вольта на управляющем электроде.




К сожалению оказалось, что повышающий модуль имеет среднюю точку, а это не позволяет без особых ухищрений брать управляющее напряжение с уже установленных аккумуляторов.

Поэтому берем пальчиковую батарейку.




А маленькая тактовая кнопка служит курком коммутирая через тиристор большие токи.






На этом все бы и закончилось, но два тиристора не выдержали таких издевательств.
Так что пришлось подбирать тиристор помощнее, 70TPS12, он выдерживает 1200-1600В и 1100А в импульсе.




Раз проект все равно заморозился на недельку, докупим еще и детали для того, чтобы сделать индикатор заряда. Он может работать в двух режимах, зажигая только один диод, сдвигая его, либо поочередно зажигая все.

© 2024 softlot.ru
Строительный портал SoftLot