Половые хромосомы и аутосомы. Сцепленное с полом наследование

Половые хромосомы, в отличие от аутосом, обозначаются не порядковыми номерами, а буквами X, Y, W или Z, причём отсутствие хромосомы обозначается цифрой 0. При этом один из полов определяется наличием пары одинаковых половых хромосом (гомогаметный пол, XX или WW), а другой - комбинацией двух непарных хромосом или наличием только одной половой хромосомы (гетерогаметный пол, XY, WZ или X0). У человека, как и у большинства млекопитающих, гомогаметный пол - женский (XX), гетерогаметный пол - мужской (XY). У птиц, напротив, гетерогаметный пол - женский (WZ), а гомогаметный - мужской (WW). У амфибий и рептилий имеются виды (например, все виды змей) с гомогаметными самцами и гетерогаметными самками, а некоторые черепахи (крестогрудая черепаха Staurotypus salvinii и черная пресноводная черепаха Siebenrockiella crassicollis), наоборот, имеют гетерогаметных самцов и гомогаметных самок. В некоторых случаях (у утконоса) пол определяется не одной, а пятью парами половых хромосом

Рисунок 13. Карта Х-хромосомы человека

На стрекозах показано, что форма XY эволюционно более поздняя, чем ХО. Другая точка зрения - половые хромосомы произошли от обычной пары аутосом, несущей гены, определяющие пол. Поэтому у одних видов (более примитивных) Y-хромосома такая же по размерам, как и Х-хромосома, конъюгирует с ней полностью или частично, участвует в кроссинговере. А у других видов - она маленькая, с Х-хромосомой соединяется конец в конец, без кроссинговера. В процессе эволюции Y- хромосома почему-то теряет активные гены, деградирует и исчезает, потому форма XY предшествует ХО.

Рисунок 14. Половые хромосомы (Х и Y)

Y-хромосома - самая вариабельная хромосома генома. У человека она генетически почти пустая (ген волосатости ушей и перепонок между пальцами ног). У других видов может содержать много активных генов - у гуппи - около 30 Y-генов окраски самцов (и только 1 аутосомный ген).

Y-хромосома Drosophila. Содержит 9 генов: 6 определяют фертильность самцов, 3 bobbed кластер генов рРНК. Активность bb генов приводит к формированию ядрышка. Ядрышкообразующий bb ген есть и в Х-хромосоме - сайт спаривания Х и Y хромосом - сайт collohaes. Ответственными за конъюгацию являются короткие последовательности нуклеотидов (240 п.н.), расположенные между генами рРНК в Х и Y - хромосомах. Удаление bb локуса - нет конъюгации половых хромосом. Ещё один ген - crystal - влияет на поведение хромосом в мейозе. Его делеция - нарушается расщепление хромосом в мейозе.

У дрозофилы 6 факторов фертильности самцов. Из них 3 очень большие - занимают по 10% Y- хромосомы каждый, т.е. по 4000 т.п.н.

В составе ДНК Y-хромосомы 2 типа последовательностей:

Y - специфичные - семейства из 200-2000 копий, организованы в кластеры тандемно повторенных единиц длиной 200-400 п.н. Расположены, вероятно, в петлях.

Y-ассоциированные (встречаются в других хромосомах).

Y-хромосома человека

Y-хромосома является наименьшей по размеру из 24 хромосом у человека и содержит около 2-3% ДНК гаплоидного генома, составляя приблизительно 51 Mb. Из всего объема ДНК Y-хромосомы на данный момент секвенировано 21.8 Mb. Короткое плечо Y-хромосомы (Yp) содержит примерно 11 Mb, а длинное плечо (Yq) - 40 Mb ДНК, из которых около 7 Mb приходятся на эухроматиновую часть Yq и около 3 Mb ДНК на центромерную область хромосомы. Большая часть (~60%) длинного плеча Y-хромосомы представляет собой функционально неактивный гетерохроматин, имеющий размер около 24 Mb. В Y-хромосоме выделяют несколько областей: псевдоаутосомные области (PARs); - эухроматиновую область короткого плеча (Yp11); - эухроматиновую область проксимальной части длинного плеча (Yq11); - гетерохроматиновую область дистальной части длинного плеча (Yq12); - область прицентромерного гетерохроматина.

Y-хромосома содержит около 100 функциональных генов. Из-за наличия на Х и Y-хромосомах (на теломерах) гомологичных PAR-регионов, половые хромосомы регулярно конъюгируют и рекомбинируют участками этих регионов в зиготене и пахитене профазы I мейоза. Однако большая часть (~95%) Y-хромосомы не принимает участия в рекомбинации, и поэтому называется нерекомбинирующей областью Y-хромосомы (NRY - Non Recombinant Region Y chromosome).

Гетерохроматиновая область длинного плеча Y-хромосомы является генетически инертной и содержит различные типы повторов, в том числе высокоповторяющиеся последовательности двух семейств DYZ1 и DYZ2, каждый из которых представлен приблизительно 5000 и 2000 копиями соответственно.

На основе сравнительного анализа генов гоносом X и Y в Y-хромосоме выделяют три группы генов:

1. PAR-гены (PAR - Pseudoautosomal Region; гены псевдоаутосомных областей PAR1 и PAR2), локализованные в теломерных областях Y-хромосомы;

2. X-Y гомологичные гены, локализованные в нерекомбинирующих областях Yp и Yq;

3. 3. Y-специфичные гены, расположенные в нерекомбинирующих областях Yp и Yq.


Рисунок 15. Y-хромосома

Первая группа представлена генами псевдоаутосомных областей (регионов). Они являются идентичными для X- и Y-хромосом и наследуются как аутосомные гены. PAR1-регион расположен на конце короткого плеча Y-хромосомы, он больше по размеру, чем PAR2-регион, локализованный на конце длинного плеча Y-хромосомы, и его размер приблизительно оценивается в 2,6 Mb. Так как делеции PAR1 приводят к нарушениям конъюгации гоносом во время мейоза у мужчин и могут привести к мужскому бесплодию, предполагается, что PAR-регионы имеют существенное значение для нормального протекания сперматогенеза у мужчин.

Вторая группа генов содержит X-Y-гомологичные, но не идентичные гены, которые локализованы в нерекомбинирующих районах Y-хромосомы (на Yp и Yq). В нее включены 10 генов, представленных на Y-хромосоме одной копией, большинство из них экспрессируются у человека во многих тканях и органах, включая яички и предстательную железу. До сих пор неизвестно, являются ли эти X-Y-гомологичные гены функционально взаимозаменяемыми.

Третью группу генов составляют 11 генов, которые расположены в нерекомбинирующем районе Y-гоносомы (NRY). Все эти гены, за исключением гена SRY (Sex-Determining Region Y Chromosome, пол-детерминирующий регион Y-хромосомы), представленного одной копией, являются мультикопийными, и их копии расположены на обоих плечах Y-хромосомы. Некоторые из них являются генами-кандидатами на AZF-фактор (Azoospermia factor, или фактор азооспермии).

О точных функциях большинства этих генов известно мало. Продукты, кодируемые генами нерекомбинирующего региона Y-хромосомы, выполняют различные функции, например, среди них имеются факторы транскрипции, цитокиновые рецепторы, протеинкиназы и фосфатазы, которые могут влиять на клеточную пролиферацию и/или передачу сигналов в клетке.

На длинном плече Y-хромосомы расположен AZF (Azoospermia Factor) локус - содержит гены, контролирующие процесс дифференцировки половых клеток, т.е. сперматогенез. В данном локусе выделяют 3 региона - a (800 т.п.н.), b (3,2 млн пн), c (3,5 млн. пн). Микроделеции участков данного локуса являются одной из основных генетических причин мужского бесплодия. Микроделеции длинного плеча Y-хромосомы обнаруживаются у 11% мужчин с азооспермией и у 8% мужчин с олигозооспермией тяжелой степени. При делеции всего с-региона AZF локуса возможно возникновение блока в митозе и мейозе при сперматогенезе; на гистологических препаратах у таких больных в большинстве семенных канальцев отсутствуют половые клетки.

Для Y-хромосомы характерны специфические черты, резко отличающие ее от других хромосом человека: 1) обедненность генами;

2) обогащенность повторяющимися блоками нуклеотидов. Присутствие значительных гетерохроматиновых районов;

3) наличие области гомологии с Х-хромосомой - псевдоаутосомальной области (PAR) (Черных, Курило, 2001).

Y-хромосома, как правило, не велика - 2-3% гаплоидного генома. Тем не менее, кодирующей способности ее ДНК у Homo sapiens достаточно по крайней мере для нескольких тысяч генов. Однако у этого объекта в Y-хромосоме выявляется всего около 40 обогащенных ГЦ-парами так называемых ЦрГ-островков, обычно фланкирующих большинство генов. Реальный же список генетических функций, связанных с этой хромосомой, вдвое меньше. Фенотипическое влияние этой хромосомы у мышей ограничено весом тестисов, уровнем тестостерона, серологического HY-антигена, чувствительностью органов к андрогенам и сексуальным поведением. Большая часть генов этой хромосомы имеет X-хромосомные аналоги. Большинство Y-хромосомных последовательностей гомологичны ДНК Х-хромосомы или аутосом и лишь часть из них строго уникальна.

Наличие псевдоаутосомальных областей, обеспечивающих мейотическое спаривание и рекомбинацию, обычно рассматривается как необходимое условие фертильности. Интересно, что размер участка мейотического спаривания существенно длиннее PAR. У человека имеются два псевдоаутосомальных района на вершине короткого и длинного плеч Х-хромосомы. Однако, только для первого из них установлены облигатный обмен в мейозе, наличие хиазм, влияние на фертильность.

Высказано предположение о происхождении половых хромосом млекопитающих от предковой аутосомы в результате независимых циклов: добавление - рекомбинация - деградация. PAR, по такой терминологии, представляет собой лишь как бы реликт такого последнего добавления. Далее происходят деградация и потеря соответствующих Y-хромосомных частей и инактивация Х-хромосомы. Все гены, представленные в Y-хромосоме, или имеют реальную селективную ценность (например, SRY), или находятся на пути исчезновения. Каждый Y-хромосомный ген, быстро дивергирующий, амплифицирующийся или склонный к исчезновению, имеет своего гомолога в Х-хромосоме, более консервативного и активного у обоих полов. Так, Sox3, предполагаемый X-хромосомный гомолог SRY, кодирует почти идентичные продукты у человека, мыши и сумчатых, экспрессируется в нервной системе обоих полов. SRY быстро дивергирует и активен только в гонадном бугорке. Этот Y-хромосомный ген подвергается амплификации у многих мышей и крыс.

Таким образом, Y-хромосома, единственная в геноме млекопитающих, не работает непосредственно на реализацию фенотипа. Ее генетическая значимость связана с преемственностью между поколениями, в частности с контролем гаметогенеза, первичной детерминацией пола. Жесткий отбор действует только на немногие ее гены, остальная ДНК более пластична.

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).


Изучение под микроскопом кариотипа человека осуществляется с помощью цитогенетического метода.

Кариотип -совокупность хромосом, характерных для соматических клеток данного организма.

Идеограмма (систематизированный кариотип)- графическое изображение хромосом с учетом их абсолютной и относительной длины, центромерного индекса, наличие второй перетяжки и спутника.

Понятие Кариотип введено сов. генетиком Г. А. Левитским (1924). Кариотип - одна из важнейших генетических характеристик вида, т.к. каждый вид имеет свой Кариотип, отличающийся от Кариотип близких видов (на этом основана новая отрасль систематики - так называемая кариосистематика). Постоянство Кариотип в клетках одного организма обеспечивается митозом, а в пределах вида - мейозом. Кариотип организма может изменяться, если половые клетки (гаметы) претерпевают изменения под влиянием мутаций. Иногда Кариотип отдельных клеток отличается от видового Кариотип в результате хромосомных или геномных так называемых соматических мутаций. Кариотип диплоидных клеток состоит из 2 гаплоидных наборов хромосом (геномов), полученных от одного и др. родителя; каждая хромосома такого набора имеет гомолога из др. набора. Кариотип самцов и самок могут различаться по форме (иногда и числу) половых хромосом, в таком случае они описываются порознь. Хромосомы в Кариотип исследуют на стадии метафазы митоза. Описание Кариотип обязательно сопровождается микрофотографией или зарисовкой. Для систематизации Кариотип пары гомологичных хромосом располагают, например, по убывающей длине, начиная с длинной пары;пары половых хромосом располагают в конце ряда.

Пары хромосом, не различающихся по длине, идентифицируют по положению центромеры (первичной перетяжки), которая делит хромосому на 2 плеча, ядрышкового организатора (вторичной перетяжки), по форме спутника и др. признакам. Исследованы Кариотип несколько тыс. диких и культурных видов растений, животных и человека.

Аутосомы - парные хромосомы, одинаковые для мужских и женских организмов. В клетках тела человека 44 Аутосомы (22 пары)

Половые хромосомы - хромосомы, содержащие гены, определяющие половые признаки организма.

В кариотипе (качественном и количественном наборе хромосом) женщин половые хромосомы одинаковые. В кариотипе мужчины - 1 одна крупная равноплечая половая хромосома, другая - маленькая палочковидная хромосома.

Половые хромосомы женщин обозначают XX, а мужские половые хромосомы - XY. Женский организм формирует гаметы с одинаковыми половыми хромосомами (гомогаметный организм), а мужской организм формирует гаметы неодинаковые по половым хромосомам (X и Y).

У птиц, бабочек и некоторых видов рыб гомогаметен мужской пол. У петуха кариотип обозначается XX, а у курицы - XY.

24. Пол, его предопределение (прогамное, сингамное, эпигамное).

Пол - это совокупность признаков и свойств организма, определяющих его участие в размножении.

Пол особи может определяться:

а) до оплодотворения яйцеклетки сперматозоидом (прогамное определение пола);

б) в момент оплодотворения (сингамное определение пола);

в) после оплодотворения (эпигамное определение пола).

До оплодотворения пол определяется у некоторых организмов в результате разделения яйцеклеток на быстро и медленно растущие. Первые (более крупные) после слияния с мужской гаметой дают самок, а вторые (мелкие) - самцов. У коловраток, способных размножаться помимо обычного полового размножения с оплодотворением, партеногенетически, часть партеногенетических яйцеклеток во время развития лишается половины хромосом. Из таких яиц развиваются самцы, а остальная часть дает начало самкам.

У морского кольчатого червя бонеллия определение пола происходит в процессе онтогенеза: если личинка садится на дно, из нее развивается самка, а если прикрепляется к хоботку взрослой самки, то самец.

У подавляющего же большинства эукариот пол закладывается в момент оплодотворения и определяется генотипически хромосомным набором, который зигота получает от родителей. Клетки мужских и женских особей животных организмов различаются по паре хромосом. Эту пару называют половыми хромосомами (гетеросомами) в противоположность остальным - аутосомам. Половые хромосомы принято обозначать как Х - и Y-хромосомы. В зависимости от их сочетания у и организмов различают 5 типов хромосомного определения пола:

1) XX, ХО (O обозначает отсутствие хромосом) встречается у видов Protenor (насекомые);

2) XX, XY - он характерен, например, для дрозофилы, млекопитающих (в том числе и для человека);

3) XY, XX - этот тип определения пола характерен для бабочек, птиц, рептилий;

4) ХО, XX - наблюдается у тли;

5) гаплодиплоидный тип (2n, n) встречается, например, у пчел: самцы развиваются из неоплодотворенных гаплоидных яйцеклеток, самки - из оплодотворенных диплоидных.

Конкретные механизмы, связывающие развитие мужского или женского пола с определенным сочетанием половых хромосом у разных организмов различен. У человека, например, пол определяется наличием Y-хромосомы: в ней есть ТДФ-ген, он кодирует тестикул - детерминирующий фактор, который определяет развитие мужского пола.

У дрозофилы же в Y-хромосоме находится ген фертильности, ответственный за плодовитость самца, а пол определяется балансом числа Х-хромосом и числа наборов аутосом (обычный диплоидный организм содержит, соответственно, два набора аутосом). В Х-хромосомах расположены гены, определяющие развитие по пути самки, а в аутосомах - по пути самца.

Если отношение количества Х-хромосом к количеству наборов аутосом равно 0,5, то развивается самец, а если - 1, то самка.

Помимо нормальных самцов и самок иногда появляются интерсексы - особи, по своим половым признакам занимающие промежуточное положение между мужским и женским полом (не путать с гермафродитами!). Это может быть вызвано как анеуплоидией по половым хромосомам в гаметах, так и различными нарушениями (например, гормональными) в процессе дифференцировки пола.

ПОЛОВЫЕ ХРОМОСОМЫ ПОЛОВЫЕ ХРОМОСОМЫ

хромосомы, определяющие различие кариотипов особей разных полов у раздельнополых организмов. Пол, имеющий 2 одинаковые П. х., обозначаемые обычно как X-хромосомы, наз. гомогаметным. Гетерогаметный пол у разных видов животных и растений имеет либо одну Х-хромосому (тип ХО), либо пару различающихся П. х.- X и Y (тип XY). Как в типе XY (человек, др. млекопитающие, дрозофила), так и в типе ХО (клопы, кузнечики) в большинстве случаев гетерогаметен муж. пол. В этом случае у самок в результате мейоза образуются гаметы, содержащие все по одной Х-хромосоме, у самцов одни гаметы формируются с Х-, другие - с Y-хромосомой или без П. х. Оплодотворение яйцеклетки сперматозоидом, несущим Х-хромосому, приводит к образованию ХХ-зиготы, из крой развивается жен. особь; оплодотворение сперматозоидом, не содержащим Х-хромосомы, приводит к появлению муж. особи. У птиц, бабочек, нек-рых пресмыкающихся и земноводных гомогаметен муж. пол, а гетерогаметен женский. П. х. содержат гены, определяющие не только половые, но и др. признаки организма, к-рые наз. сцепленными с полом. Y-хромосома (по сравнению с X-хромосомой) часто обеднена генами, содержит много структурного гетерохроматина и, как правило, меньше по размеру. Большинство генов Х-хромосомы не представлены в Y-хромосоме, но доза их обычно компенсируется у гомогамет-ного пола (см. ПОЛОВОЙ ХРОМАТИН). Нерасхождение П. х. у одного из родителей в момент образования половых клеток приводит к нарушениям развития организма. См. также ПОЛ.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

половы́е хромосо́мы

Специальная пара хромосом в хромосомном наборе раздельнополых организмов; хромосомы содержат гены, направляющие развитие оплодотворённой яйцеклетки в мужскую или в жен–скую особь. В отличие от всех остальных пар гомоло–гичных хромосом (аутосом), половые хромосомы различаются размерами. У человека и др. млекопитающих, у многих насекомых особи женского пола содержат в хромосомном наборе две большие хромосомы, которые обозначаются как Х-хромосомы, т.е. для женского пола характерен тип ХХ. В клетках особей мужского пола пару с большой Х-хромосомой составляет маленькая хромосома, которую обозначают как Y-хромосома, т.е. для мужского пола –характерен тип XY. При образовании половых клеток (гамет) в мейозе у особей женского пола все яйцеклетки получат Х-хромосому и будут равноценными. Такой пол называется гомогаметным (от греч. «гомос» – равный, одинаковый). При образовании гамет особями мужского пола одна половина сперматозоидов получит Х-хромосому, другая Y-хромосому. Такой пол с неравноценными гаметами называется гетерогаметным. При оплодотворении случайное соединение яйцеклеток и сперматозоидов даёт статистически одинаковое число сочетаний ХХ и ХY и, значит, появление примерно равного числа женских и мужских особей. У бабочек, птиц, некоторых земноводных и пресмыкающихся противоположное определение пола: у них гомогаметен мужской пол (тип ХХ) и гетерогаметен женский (тип ХY). Есть виды, напр. кузнечики, у которых Y-хромосома отсутствует и гетерогаметный пол (в данном случае – мужской) несёт только одну Х-хромосому (тип ХО), а развитие по мужскому типу определяют аутосомы. Существуют и др. способы определения пола.
В половых хромосомах находятся гены, которые, помимо признаков пола, определяют и другие признаки. Такие признаки называются сцепленными с полом, т.к. их наследование связано с передачей потомкам половых хромосом. Большие Х-хромосомы включают много генов (у дрозофилы их более 500), маленькие Y-хромосомы – мало. Поскольку для большинства генов Х-хромосомы нет соответствующих парных аллелей в Y-хромосоме, у гетерогаметного пола могут проявляться все рецессивные гены –Х-хромосомы, в т.ч. и мутировавшие гены, ответственные за развитие болезней. Так, расположенные в Х-хромосоме дефектные рецессивные гены несвёртываемости крови (гемофилии) и цветовой слепоты (дальтонизма) обычно не проявляются у женщин, обладающих второй Х-хромосомой, но обнаруживаются у мужчин. Таким образом, болезнь передаётся по женской линии, но сами женщины от неё не страдают, т.к. дефектные гены скрыты нормальным проявлением аллельных генов из гомологичной
Х-хромосомы. Нарушения числа половых хромосом в клетках (геномные мутации ) приводят к тяжёлым заболеваниям у обоих полов.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "ПОЛОВЫЕ ХРОМОСОМЫ" в других словарях:

    Половые хромосомы. У живых организмов с хромосомным определением пола половыми хромосомами называют хромосомы, различно устроенные у мужских и женских организмов. По традиции половые хромосомы, в отличие от аутосом, обозначаются не порядковыми… … Википедия

    Современная энциклопедия

    Хромосомы раздельнополых организмов, в которых расположены гены, определяющие пол и сцепленные с полом признаки организма. В хромосомном наборе клеток млекопитающих и человека особи женского пола имеют две одинаковые (тип ХХ), а мужского пола… … Большой Энциклопедический словарь

    Половые хромосомы - ПОЛОВЫЕ ХРОМОСОМЫ, хромосомы раздельнополых организмов, в которых расположены гены, определяющие пол и сцепленные с полом признаки организма. В хромосомном наборе клеток млекопитающих и человека особи женского пола имеют две одинаковые (тип XX),… … Иллюстрированный энциклопедический словарь

    ПОЛОВЫЕ ХРОМОСОМЫ, два типа ХРОМОСОМ, содержащихся в ядрах КЛЕТОК человека, которые несут информацию о половых различиях. Условно эти типы обозначаются как Х хромосома и Y xpoмосома. В норме в клетках женского тела имеются две Х хромосомы, а… … Научно-технический энциклопедический словарь

    Половые хромосомы - * палавыя храмасомы * sex chromosomes гомологичные хромосомы, отличающиеся по структуре и функциям от аутосом и определяющие пол развивающейся особи (). П. х. различны у гетерогаметных особей (Х и Y хромосомы, а также Wи Z хромосомы) () … Генетика. Энциклопедический словарь

    Хромосомы раздельнополых организмов, в которых расположены гены, определяющие пол и сцепленные с полом признаки организма. В хромосомном наборе клеток млекопитающих и человека особи женского пола имеют две одинаковые (тип XX), а мужского пола … … Энциклопедический словарь

    половые хромосомы - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ПОЛОВЫЕ ХРОМОСОМЫ, ГЕТЕРОСОМЫ – хромосомы, определяющие пол особи … Общая эмбриология: Терминологический словарь

    половые хромосомы - lytinės chromosomos statusas T sritis augalininkystė apibrėžtis Chromosomos, besiskiriančios struktūra ir funkcijomis ir lemiančios individų lytį. atitikmenys: angl. heterochromosomes; sex chromosomes rus. гетерохромосомы; половые хромосомы… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    Хромосомы раздельнополых организмов, в к рых расположены гены, определяющие пол и сцепленные с полом признаки организма. В хромосомном наборе клеток млекопитающих и человека особи жен. пола имеют две одинаковые (тип XX), а муж. пола неодинаковые… … Естествознание. Энциклопедический словарь

Половое размножение свойственно всем живым организмам за исключением тех, которые вторично утратили половой процесс. Определение и развитие пола — сложный процесс, который детерминирован генетически, т.е. находится под контролем генов, а также подвержен влиянию внешней среды.


В животном мире господствует раздельнополость, т.е. существуют два типа ясно различающихся в половом отношении организмов — самцы и самки. Различия между ними очень глубокие и затрагивают не только органы, непосредственно участвующие в половом размножении. Половые различия сопровождаются заметными различиями в росте, обмене веществ, инстинктах, а также в тех признаках, которые подвержены воздействию половых желез, например, гребни, рога, волосы, оперение.

Гермафродитизм у животных в норме встречается только у немногих видов, например у червей.

У растений, наоборот, преобладает гермафродитность . Половые различия у растений выражены менее резко, чем у животных. Для растений характерны переходы от обоеполости к однополости, частые аномалии в развитии генеративных органов, изменение пола под влиянием внешних условий.

Определение пола у разных организмов может происходить на разных стадиях жизненного цикла.

Пол зиготы может предопределяться еще в процессе созревания женских гамет — яйцеклеток. Такое определение пола называется прогамным , т.е. оно происходит до оплодотворения. Прогамное определение пола обнаружено у коловраток и кольчатых червей. Яйцеклетки этих животных в результате неравномерного распределения цитоплазмы в процессе оогенеза различаются по размеру. Из крупных яйцеклеток после определения развиваются только самки, из мелких — только самцы.

Наиболее распространенным типом определения пола является сингамное , т.е. определение пола в момент слияния женских и мужских гамет. Оно встречается у млекопитающих, птиц, рыб и др.

Известен также третий тип определения пола — эпигамное , которое происходит на ранних стадиях индивидуального развития особи (например, у морского червя Bonelia viridis).

У большинства животных и раздельнополых растений основную роль в определении пола играют половые хромосомы . Еще в начале ХХ в. (1902 г., McClung) было установлено, что у некоторых насекомых (клоп Protenor) самцы образуют два типа сперматозоидов: один тип — с лишней хромосомой, второй — без нее. У самцов клопа Protenor в одних сперматозоидах было 7 хромосом, в других — 6. Непарную хромосому назвали половой хромосомой, в отличие от остальных — аутосом . В соматических клетках самца содержится 13 хромосом, одна из которых Х-хромосома (12A+X), в соматических клетках самки — 14 хромосом (12A+XX). Женский пол клопа является гомогаметным, так как образует гаметы одного типа (6A+X), а мужской — гетерогаметным и образует два типа гамет (6A+X) и (6А+0). Такой тип определения пола, при котором самки имеют кариотип ХХ , а самцы — Х0 , назван Protenor-типом. Он описан у большинства прямокрылых насекомых, жуков, пауков, многоножек и нематод.

Вслед за Protenor-типом был открыт другой тип определения пола, который характерен для млекопитающих, многих рыб, амфибий и ряда растений. Впервые он был описан у клопа Lygaeus turcicus и получил название Lygaeus-типа. При этом типе определения пола имеются два вида половых хромосом: Х и Y . Самки имеют две хромосомы, а самцы одну Х-хромосому и непарную ей Y-хромосому. Обозначение половых хромосом буквами X и Y отражает их форму, которую они имеют в профазе мейоза в результате отталкивания хроматид, соединенных только в области первичной перетяжки.

Женский пол при типе Lygaeus является гомогаметным, мужской — гетерогаметным.

У птиц, некоторых видов бабочек и рыб тип определения пола — обратный Lygaeus, т.е. гомогаметным является мужской пол. В этом случае для обозначения половых хромосом используют другие буквы: ♀ZW, ♂ZZ.

У моли описан тип — обратный Protenor, т.е. ♀Х0, ♂ХХ.

Особый тип определения пола характерен для пчел. Здесь разница между полами затрагивает не одну пару хромосом, а весь набор. Самки пчел — диплоидны, а самцы — гаплоидны, так как женские особи развиваются из оплодотворенных яйцеклеток, мужские особи — в результате партеногенеза.

Хромосомный механизм определения пола у растений был впервые определен у печеночного мха — Sphaerocarpus в ходе тетрадного анализа. Из четырех спор, образующихся в результате мейотического деления материнской клетки, две дают начало женским растениям, а две другие — мужским. Поскольку хромосомы мха Х и Y морфологически легко различимы, было установлено, что женские растения имеют кариотип 7А + Х, а мужские — 7А + Y. Диплоидный спорофит, который образуется в результате оплодотворения, имеет кариотип 14А + XY.

Гетероморфные пары хромосом обнаружены у мужских растений дремы, конопли, щавеля, хмеля и др. Определение пола у них соответствует типу Lygaeus. У земляники гетерогаметным (XY ) является женский пол, мужской — гомогаметным.

Половые хромосомы отличаются от аутосом поведением в профазе мейоза. Во время гаметогенеза они находятся в сильно спирализованном состоянии и редко объединяются в биваленты. Тем не менее они обладают сегментной гомологией и проявляют тенденцию к частичной коньюгации.

X и Y -хромосомы различаются по форме, величине и генному составу. Х-хромосома чаще всего относится к разряду крупных хромосом с большим генетическим объемом. У дрозофилы Х-хромосома — самая крупная в наборе. У человека Х-хромосома относится к разряду средних метацентриков, с нарушением ее структуры связан ряд тяжелых наследственных патологий (синдромов). Мужскую половую хромосому характеризует обедненность генами и, соответственно, низкая генетическая активность, а иногда и полная инертность. У человека с помощью молекулярно-генетических методов в Y-хромосоме выявлено около 40 генов. Однако реальных генетических функций еще меньше. В частности, в Y-хромосоме лежит мутация, отвечающая за малоприятный для мужчин признак — волосатость ушей. У дрозофилы Y-хромосома практически не оказывает никакого влияния на развитие пола.

У растений Y-хромосома также ведет себя по-разному: у одних она играет активную роль в определении пола, у других — является инертной. Например, Y-хромосома Milandrium alba (дрема) имеет сегменты, потеря которых ведет к нарушению нормального процесса развития пола и, как следствие, к мужской или женской стерильности. У Rumex acetosa Y-хромосома генетически инертна. У некоторых растений активность Y-хромосомы настолько высока, что особи YY оказываются жизнеспособными, как у аспарагуса, в то время как у других видов подобные особи не выживают.

Если гены, детерминирующие признаки, находятся в половых хромосомах, то их наследование не подчиняется законам Менделя. Распределение этих признаков соответствует распределению половых хромосом в процессе мейоза. Поскольку большинство генов, локализованных в Х-хромосоме, не имеют своих аллелей в Y-хромосоме, то у гетерогаметного пола (XY) в фенотипе проявляются все рецессивные гены, содержащиеся в их единственной Х-хромосоме. Гены, если они имеются в Y-хромосоме, проявляются также только у гетерогаметного пола.

Наследование признаков, определяемых генами, локализованными в Х и Y-хромосомах, называют сцепленным с полом. Впервые оно было описано Т. Морганом и его коллегами на примере рецессивного признака “white” — белые глаза.

Как видно из схемы, результаты прямого и обратного скрещиваний в случае наличия сцепления с полом разные. В прямом скрещивании гомозиготная красноглазая самка передает доминантный ген W и дочерям и сыновьям, благодаря чему все гибриды F 1 имеют красные глаза. Скрещивание гетерозиготных самок F 1 с самцами F 1 дает в F 2 только красноглазых самок, одна половина которых является гомозиготными, а другая — гетерозиготными. Среди самцов F 2 наблюдается расщепление на красноглазых и белоглазых в соотношении 1: 1, которое обусловлено гетерозиготностью самок F 1 , так как свою единственную Х-хромосому сыновья наследуют от матери. Общая формула расщепления по окраске глаз в F 2 (без учета пола) — 3: 1. На наличие сцепления признака с полом указывает то, что белая окраска глаз в F 2 проявляется только у самцов.

В обратном скрещивании рецессивная гомозиготная белоглазая самка передает ген w вместе с Х-хромосомой и дочерям и сыновьям F 1 , но проявляется он только у самцов. У самок F 1 этот ген подавляется доминантным аллельным геном, полученным от отца, и поэтому глаза у них красные. Таким образом, признак передается от отца к дочерям, а от матери к сыновьям. Такое наследование называется крисс-кросс (крест-накрест). Скрещивание самок и самцов F 1 дает мух двух фенотипических классов (красноглазых и белоглазых) в соотношении 1: 1, которое полностью соответствует распределению половых хромосом.

Описанный тип наследования окраски глаз у дрозофилы является закономерным для всех организмов в отношении признаков, которые определяются генами, локализованными в Х-хромосоме.

Сцепленное с полом наследование используется для ранней диагностики пола у животных, что важно для сельскохозяйственного производства. В птицеводстве важно определять пол “суточных” цыплят, чтобы ставить петушков и курочек на разный рацион, откармливая петушков на мясо. Для диагностики пола используется крисс-кросс наследование признака окраски пера. При скрещивании пестрой курицы (признак доминантный) с черным петухом (признак рецессивный) в F 1 все петушки, получившие доминантный ген от матери, будут пестрыми, а курочки — черными.

У человека сцепленно с полом наследуются такие наследственные аномалии, как гемофилия и дальтонизм. Поскольку у человека гетерогаметным является мужской пол, то эти аномалии проявляются, в основном, у мужчин. Женщины обычно являются носительницами таких генов, имея их в гетерозиготном состоянии.

При разведении тутового шелкопряда крисс-кросс наследование используется для отбора самцов по окраске грены (признак сцеплен с полом), так как выход шелка из коконов тутового шелкопряда мужского пола на 20-30% выше.

Картина сцепленного с полом наследования может искажаться, если наблюдаются отдельные случаи нерасхождения половых хромосом в процессе мейоза. Так, при скрещивании белоглазой самки дрозофилы с красноглазым самцом (см. выше схему наследования крисс-кросс) в F 1 , помимо красноглазых самок и белоглазых самцов, появляются единичные белоглазые самки и красноглазые самцы. Причиной этого отклонения является нерасхождение Х-хромосом у исходной самки. В процессе гаметогенеза в яйцеклетку попадает не одна Х-хромосома, а обе, или же, наоборот, ни одной, а обе попадают в полярное тельце. При оплодотворении таких яйцеклеток нормальными сперматозоидами и развиваются красноглазые самцы и белоглазые самки.

Потомство, которое образуется в результате первичного нерасхождения хромосом у самки, имеет разные, не соответствующие норме сочетания и количество половых хромосом. Однако, генетическая инертность Y-хромосомы делает особей с кариотипом ХХY женскими и жизнеспособными, а с кариотипом Х0 — мужскими и также жизнеспособными. Зиготы, не получившие Х-хромосомы (Y0 ), погибают, так же как (за редким исключением) и зиготы с тремя Х-хромосомами.

Схема наследования белой окраски глаз у дрозофилы (ген white)
при нерасхождении X-хромосом у самки

У дрозофилы выведена линия (double yellow — двойная желтая), у которой из поколения в поколение нарушается наследование сцепленного с полом признака — желтая окраска тела. У самок этой линии Х-хромосомы соединены друг с другом в проксимальной части и имеют одну центромеру. В связи с этим в мейозе они ведут себя как одна хромосома и в анафазе отходят к одному полюсу.

Гетерогаметность одного пола определяет соответствие соотношения полов в каждом поколении организмов формуле 1: 1. Это соотношение совпадает с расщеплением при анализирующем скрещивании. Рассмотрим его на примере дрозофилы, у которой определение пола соответствует Lygaeus-типу. Набор хромосом у дрозофилы состоит из трех пар аутосом и двух половых хромосом. Самка образует один тип гамет с гаплоидным набором (3A+X), а самец в равных количествах два типа гамет (3A+X) и (3A+Y). В итоге в следующем поколении развивается одинаковое количество самок и самцов.

Такое наследование наблюдается при разных типах хромосомного механизма определения пола, и вероятность рождения потомков мужского и женского пола в норме одинакова. Однако баланс полов может быть нарушен, если в половых хромосомах возникают летальные мутации. Рассмотрим случай, когда рецессивная летальная мутация (l ) возникла в одной из двух Х-хромосом самки дрозофилы (X Bl ), маркированной доминантной мутацией Bar (В ) — полосковидные глаза. Рассмотрите схему скрещивания такой самки с нормальным самцом дикого типа (+), имеющим круглые глаза.

Как видно из схемы, появление рецессивной летальной мутации в одной из Х-хромосом самки приводит к гибели половины мужского потомства. Об этом судят по отсутствию самцов с полосковидными глазами, получившими от матери Х-хромосому с летальным геном (X Bl ).

Гены, определяющие признаки пола, имеются не только в половых хромосомах, но и в аутосомах. С другой стороны, признаки, которые наследуются сцепленно с полом, часто не имеют прямого отношения к полу. Существует особая категория признаков, которые проявляются только у одного пола. Это — ограниченные полом признаки . Определяющие их гены имеются у обоих полов и могут находиться как в половых хромосомах, так и аутосомах. Однако работают эти гены, т.е. проявляют свое действие на уровне фенотипа, только у одного пола. К числу таких признаков относятся, например, молочность и жирность молока у коров, яйценоскость и размер яиц у кур. Эти признаки, которыми обладают особи женского пола, могут целиком определяться генотипом отца. Такое явление широко используется в селекции животных при использовании отцовских особей-производителей для получения высококачественного потомства.

Гены, определяющие развитие вторичных половых признаков, имеются как у мужчин, так и у женщин, но их проявление контролируется гормонами.

Пол может оказывать влияние на характер проявления признака, т.е. на его доминантность или рецессивность. В этом случае признаки называют зависимыми от пола . Так, например, у овец ген, определяющий развитие рогов, является доминантным у самцов и рецессивным — у самок. В связи с этим гетерозиготные самки являются комолыми, а гетерозиготные самцы — рогатыми. У человека точно так же наследуется признак плешивости. Зависимые от пола признаки находятся под сильным влиянием половых гормонов, соотношение которых может либо усилить, либо ослабить экспрессию гена.

Итак, подведем итог, касающийся механизма определения пола. Пол, как любой другой признак организма, детерминирован генетически. В определении пола у большинства животных и растений основная роль принадлежит половым хромосомам. Расщепление по полу соответствует соотношению 1: 1, что обусловлено равновероятным образованием двух типов гамет (1/2 с Х и 1/2 с Y хр.) у гетерогаметного пола (XY ). Гетерогаметным может быть как мужской, так и женский пол.

Определение пола — это начальный этап становления пола, за которым следует процесс его дифференциации, приводящий к развитию двух разных половых типов — женского и мужского. У животных половая дифференциация затрагивает всю организацию особи: строение органов размножения, внешнюю морфологию, обмен веществ, поведение, гормональный баланс, продолжительность жизни и пр. Половые различия которые обеспечивают комбинативную изменчивость внутри вида, а также его изоляцию, являются адаптивным механизмом.

Различают первичные и вторичные половые признаки. Первые непосредственно обеспечивают осуществление полового процесса. В частности, к ним относятся различия в строении внешних и внутренних половых органов женских и мужских особей. Развитие вторичных половых признаков является результатом нормального функционирования гонад (т.е. опосредовано первичными половыми признаками) и способствует половому размножению. Регулируется развитие вторичных половых признаков с помощью половых гормонов.

На процесс дифференциации пола оказывают влияние как генотипические факторы, так и внешняя среда.

Еще в начале ХХ в. было высказано предположение, что зигота является потенциально бисексуальной, но существуют механизмы, осуществляющие дифференциацию пола. Одним из таких механизмов является баланс половых хромосом и аутосом, при нарушении которого развитие пола отклоняется либо в сторону женского, либо в сторону мужского пола. Необходимость такого баланса впервые была установлена в опытах К. Бриджеса (лаборатория Т. Моргана), который обнаружил линию дрозофилы, дающую наряду с нормальными самцами и самками большой процент интерсексов. Интерсексы представляют собой смесь первичных и вторичных мужских и женских половых признаков, образуя все переходные типы: от сходных в основном с самцами до сходных с самками. Все они стерильны. В опыте Бриджеса они возникли в потомстве триплоидных самок, оплодотворенных нормальными диплоидными самцами, и содержали три набора аутосом и нормальное количество половых хромосом: 2Х+3А. Наряду с типичными интерсексами, в потомстве были представлены особи с гипертрофированными признаками женского пола — суперсамки (3Х+2А), и мужского пола — суперсамцы (XY+3X).

На основании этих результатов Бриджес пришел к выводу, что не само присутствие двух половых хромосом (XX или XY) определяет развитие пола, а баланс половых хромосом и гаплоидных наборов аутосом. Поскольку у дрозофилы Y-хромосома генетически инертна, то важно только количество Х-хромосом. Все особи с отношением 2Х: 2А = 1 являются самками, особи с отношением 1Х: 2А = 0,5 — самцами, типы с промежуточными между 1 и 0,5 отношениями являются интерсексами, а отношения больше 1 дают суперсамок, меньше 0,5 — суперсамцов.

Аномальное развитие пола при изменении числа наборов аутосом обусловлено нарушением баланса генов, которые участвуют в развитии пола. Поскольку гены проявляют свое действие в конкретных условиях, то на их функционирование оказывают влияние внешние факторы. Так, потомство триплоидных самок дрозофилы воспитывалось в условиях высокой и низкой температур. В обоих случаях развивались интерсексы, но при высокой температуре преимущественно с признаками самки, а при пониженной — с признаками самца. Таким образом, окончательное развитие пола является результатом сложных взаимодействий генов, локализованных как в половых хромосомах, так и в аутосомах, друг с другом и с факторами окружающей среды.

Изначальная бисексуальность зигот подтверждается фактами переопределения пола в процессе индивидуального развития. Классический пример — морской червь Bonellia viridis. Свободноплавающие личинки этого червя развиваются в самок. Если же личинка остается прикрепленной к материнской особи, из нее развивается самец. Будучи отделена от самки, такая личинка, начавшая развиваться в самца, изменяет направление дифференциации пола в женскую сторону и из нее развивается интерсекс. В хоботке самки имеются химические регуляторы, способные переопределять пол личинок.

Большой интерес представляет экспериментальное переопределение пола. Путем воздействия гормональными препаратами у ряда животных удается получить полное превращение пола вплоть до способности формировать половые клетки противоположного пола. Такое превращение известно у некоторых лягушек, рыб, птиц и других животных. Так, раннее удаление яичника у самок кур и голубей может изменить в мужскую сторону окраску оперения, поведение и даже вызвать развитие семенника. У крупного рогатого скота наблюдались случаи рождения разнополых двойнь, в которых бычок оказывался нормальным, а телка — стерильной, со многими чертами самцового типа. Такие двойни носят название “фримартинов”. Их появление обусловлено тем, что семенники мужского эмбриона рано начинают выделять мужской гормон, который попадает в кровь и оказывает влияние на близнеца.

Один из ярких примеров полного переопределения пола описан в 1953 г. японским ученым Т. Ямамото. Опыт проводился на белых и красных медаках (Oryzias latipes), у которых доминантный ген красной окраски находится в Y-хромосоме. При такой локализации гена при скрещивании самцы всегда будут красными, а самки — белыми. Фенотипических самцов кормили с добавлением в корм женского полового гормона. В результате оказалось, что все красные рыбки с генотипом самца являются самками с нормальными яичниками и женскими вторичными половыми признаками.

Переопределение пола может быть следствием мутаций отдельных генов, участвующих в дифференциации пола. Так, у дрозофилы в одной из аутосом обнаружен рецессивный ген tra , присутствие которого в гомозиготном состоянии обусловливает развитие женских зигот (XX) в фенотипических самцов, оказывающихся стерильными. Самцы XY, гомозиготные по этому гену, являются плодовитыми.

Аналогичные гены найдены у растений. Так, у кукурузы рецессивная мутация silkless в гомозиготном состоянии вызывает стерильность семяпочек, в связи с чем обоеполое растение функционирует как мужское. У сорго обнаружены два доминантных гена, комплементарное взаимодействие которых также вызывает женскую стерильность.

У наездника Habrobracon пол определяется по тому же типу, что и у пчел: диплоидные самки развиваются из оплодотворенных яиц, а гаплоидные самцы партеногенетически. Но иногда самцы могут развиваться из оплодотворенных яиц. Причина такой ситуации лежит в действии специфического гена, в гомозиготном состоянии определяющего развитие зиготы по мужскому типу.

Правильность хромосомной теории определения пола подтверждается существованием половых мозаиков, или гинандроморфов , совмещающих в себе части тела мужского и женского полов. Известны разные типы гинандроморфов: латеральные, переднезадние, мозаичные.


Билатеральный гинандроморф
Drosophila melanogaster

Латеральный гинандроморфизм описан у насекомых, у кур, у певчих птиц. В этом случае одна половина тела соответствует женскому типу, вторая — мужскому. При мозаичном гинандроморфизме большая часть тела имеет признаки одного пола, и лишь отдельные участки — признаки противоположного пола. Этот тип описан, в частности, у дрозофилы. Чаще всего причиной появления гинандроморфов является утрата одной из двух Х-хромосом в раннем дроблении зиготы с кариотипом самки (ХХ). Клетки с кариотипом Х0 обнаруживают признаки мужского пола. Чем раньше произойдет элиминация Х-хромосомы, тем больше участков мужского типа будет представлено в теле взрослой мухи. Обнаруживаются такие мозаики по проявлению рецессивных генов, которые в зиготе находились в гетерозиготном состоянии, но проявились фенотипически в клетках с кариотипом Х0.

Еще одной причиной гинандроморфизма может быть развитие зародыша из яйцеклетки с двумя ядрами (дизиготический гинандроморфизм). В этом случае мозаики могут быть соматическими, если оба ядра имеют один и тот же набор половых хромосом, но разный генотип (например, одно ядро Аа, а другое — аа), или половыми, если одно ядро ХХ, а другое ХY, или теми и другими одновременно. Подобный тип гинандроморфизма описан у шелковичного червя, бабочки, дрозофилы.

Известен также гинандроморфизм, причиной которого является полиспермия. Он обнаружен у дрозофилы. В яйцеклетке дрозофилы могут сформироваться два женских гаплоидных пронуклеуса, с одной Х-хромосомой каждый. При проникновении в яйцеклетку двух сперматозоидов один пронуклеус может оплодотвориться сперматозоидом с Х-хромосомой, а другой — сперматозоидом с Y-хромосомой. После первого дробления образуются два бластомера, один с кариотипом ХХ, другой — ХY, что в дальнейшем приведет к развитию гинандроморфа.

© 2024 softlot.ru
Строительный портал SoftLot