Никель название химического элемента. Где в промышленности используется никель

Металл в нечистом виде впервые получил в 1751 году шведский химик А. Кронстедт, предложивший и название элемента. Значительно более чистый металл получил в 1804 году немецкий химик И. Рихтер. Название "Никель" происходит от минерала купферникеля (NiAs), известного уже в 17 веке и часто вводившего в заблуждение горняков внешним сходством с медными рудами (нем. Kupfer - медь, Nickel - горный дух, якобы подсовывавший горнякам вместо руды пустую породу). С середины 18 века Никель применялся лишь как составная часть сплавов, по внешности похожих на серебро. Широкое развитие никелевой промышленности в конце 19 века связано с нахождением крупных месторождений никелевых руд в Новой Каледонии и в Канаде и открытием "облагораживающего" его влияния на свойства сталей.

Распространение Никеля в природе. Никель - элемент земных глубин (в ультраосновных породах мантии его 0,2% по массе). Существует гипотеза, что земное ядро состоит из никелистого железа; в соответствии с этим среднее содержание Никель в земле в целом по оценке около 3%. В земной коре, где Никеля 5,8·10 -3 %, он также тяготеет к более глубокой, так называемых базальтовой оболочке. Ni в земной коре - спутник Fe и Mg, что объясняется сходством их валентности (II) и ионных радиусов; в минералы двухвалентных железа и магния Никель входит в виде изоморфной примеси. Собственных минералов Никеля известно 53; большинство из них образовалось при высоких температурах и давлениях, при застывании магмы или из горячих водных растворов. Месторождения Никеля связаны с процессами в магме и коре выветривания. Промышленные месторождения Никеля (сульфидные руды) обычно сложены минералами Никеля и меди. На земной поверхности, в биосфере Никель - сравнительно слабый мигрант. Его относительно мало в поверхностных водах, в живом веществе. В районах, где преобладают ультраосновные породы, почва и растения обогащены никелем.

Физические свойства Никеля. При обычных условиях Никель существует в виде β-модификации, имеющей гранецентрированную кубическую решетку (а = 3,5236Å). Но Никель, подвергнутый катодному распылению в атмосфере H 2 , образует α-модификацию, имеющую гексагональную решетку плотнейшей упаковки (а = 2,65Å, с = 4,32Å), которая при нагревании выше 200 °C переходит в кубическую. Компактный кубический Никель имеет плотность 8,9 г/см 3 (20 °C), атомный радиус 1,24Å, ионные радиусы: Ni 2+ 0,79Å, Ni 3+ 0,72Å; t пл 1453 °C; t кип около 3000 °C; удельная теплоемкость при 20°C 0,440 кдж/(кг·К) ; температурный коэффициент линейного расширения 13,3·10 -6 (0-100 °C); теплопроводность при 25°C 90,1 вт/(м·К) ; тоже при 500 °C 60,01 вт/(м·К) . Удельное электросопротивление при 20°C 68,4 ном·м, т.е. 6,84 мком·см; температурный коэффициент электросопротивления 6,8·10 -3 (0-100 °C). Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500 Мн/м 2 (т. е. 40-50 кгс/мм 2); предел упругости 80 Мн/м 2 , предел текучести 120 Мн/м 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м 2 ; твердость по Бринеллю 600- 800 Мн/м 2 . В температурном интервале от 0 до 631 К (верхняя граница соответствует точке Кюри) Никель ферромагнитен. Ферромагнетизм Никеля обусловлен особенностями строения внешних электронных оболочек (3d 8 4s 2) его атомов. Никель вместе с Fe (3d 6 4s 2) и Со (3d 7 4s 2), также ферромагнетиками, относится к элементам с недостроенной 3d-электронной оболочкой (к переходным 3d-металлам). Электроны недостроенной оболочки создают нескомпенсированный спиновый магнитный момент, эффективное значение которого для атомов Никеля составляет 6 μ Б, где μ Б - магнетон Бора. Положительное значение обменного взаимодействия в кристаллах Никеля приводит к параллельной ориентации атомных магнитных моментов, то есть к ферромагнетизму. По той же причине сплавы и ряд соединений Никеля (оксиды, галогениды и других) магнитоупорядочены (обладают ферро-, реже ферримагнитной структурой). Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монелъ-металл, инвар и других).

Химические свойства Никеля. В химические отношении Ni сходен с Fe и Со, но также и с Cu и благородными металлами. В соединениях проявляет переменную валентность (чаще всего 2-валентен). Никель - металл средней активности. Поглощает (особенно в мелкораздробленном состоянии) большие количества газов (H 2 , СО и других); насыщение Никеля газами ухудшает его механические свойства. Взаимодействие с кислородом начинается при 500 °C; в мелкодисперсном состоянии Никель пирофорен - на воздухе самовоспламеняется. Из оксидов наиболее важен NiO - зеленоватые кристаллы, практически нерастворимые в воде (минерал бунзенит). Гидрооксид выпадает из растворов никелевых солей при прибавлении щелочей в виде объемистого осадка яблочно-зеленого цвета. При нагревании Никель соединяется с галогенами, образуя NiX 2 . Сгорая в парах серы, дает сульфид, близкий по составу к Ni 3 S 2 . Моносульфид NiS может быть получен нагреванием NiO с серой.

С азотом Никель не реагирует даже при высоких температурах (до 1400 °C). Растворимость азота в твердом Никеле приблизительно 0,07% по массе (при 445 °C). Нитрид Ni 3 N может быть получен пропусканием NH 3 над NiF 2 , NiBr 2 или порошком металла при 445 °C. Под действием паров фосфора при высокой температуре образуется фосфид Ni 3 P 2 в виде серой массы. В системе Ni - As установлено существование трех арсенидов: Ni 5 As 2 , Ni 3 As (минерал маухерит) и NiAs. Структурой никель-арсенидного типа (в которой атомы As образуют плотнейшую гексагональную упаковку, все октаэдрические пустоты которой заняты атомами Ni) обладают многие металлиды. Неустойчивый карбид Ni 3 C может быть получен медленным (сотни часов) науглероживанием (цементацией) порошка Никеля в атмосфере СО при 300 °C. В жидком состоянии Никель растворяет заметное количество С, выпадающего при охлаждении в виде графита. При выделении графита Никель теряет ковкость и способность обрабатываться давлением.

В ряду напряжений Ni стоит правее Fe (их нормальные потенциалы соответственно -0,44 в и -0,24 в) и поэтому медленнее, чем Fe, растворяется в разбавленных кислотах. По отношению к воде Никель устойчив. Органические кислоты действуют на Никель лишь после длительного соприкосновения с ним. Серная и соляная кислоты медленно растворяют Никель; разбавленная азотная - очень легко; концентрированная HNO 3 пассивирует Никель, однако в меньшей степени, чем железо.

При взаимодействии с кислотами образуются соли 2-валентного Ni. Почти все соли Ni (II) и сильных кислот хорошо растворимы в воде, растворы их вследствие гидролиза имеют кислую реакцию. Труднорастворимы соли таких сравнительно слабых кислот, как угольная и фосфорная. Большинство солей Никеля разлагается при прокаливании (600- 800 °C). Одна из наиболее употребительных солей - сульфат NiSO 4 кристаллизуется из растворов в виде изумрудно-зеленых кристаллов NiSO 4 ·7H 2 O - никелевого купороса. Сильные щелочи на Никель не действуют, но он растворяется в аммиачных растворах в присутствии (NH 4) 2 CO 3 с образованием растворимых аммиакатов, окрашенных в интенсивно-синий цвет; для большинства из них характерно наличие комплексов 2+ и . На избирательном образовании аммиакатов основываются гидрометаллургические методы извлечения Никеля из руд. NaOCl и NaOBr осаждают из растворов солей Ni (II), гидрооксид Ni(OH) 3 черного цвета. В комплексных соединениях Ni, в отличие от Со, обычно 2-валентен. Комплексное соединение Ni с диметилглиоксимом (C 4 H 7 O 2 N) 2 Ni служит для аналитического определения Ni.

При повышенных температурах Никель взаимодействует с оксидами азота, SO 2 и NH 3 . При действии СО на его тонкоизмельченный порошок при нагревании образуется карбонил Ni(CO) 4 . Термической диссоциацией карбонила получают наиболее чистый Никель.

Получение Никеля. Около 80% Никеля от общего его производства получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты. Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения Никеля в сульфидный расплав (штейн), содержащий 10-15% Ni. Обычно электроплавке предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Cu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni - файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu и Ni. Никелевый концентрат обжигают в кипящем слое до NiO. Металл получают восстановлением NiO в электрических дуговых печах. Из чернового Никель отливают аноды и рафинируют электролитически. Содержание примесей в электролитном Никель (марка 110) 0,01%.

Для разделения Cu и Ni используют также так называемых карбонильный процесс, основанный на обратимости реакции: Ni + 4CO = Ni(CO) 4 . Получение карбонила проводят при 100-200 атм и при 200-250 °C, а его разложение - без доступа воздуха при атм. давлении и около 200 °C. Разложение Ni(CO) 4 используют также для получения никелевых покрытий и изготовления различных изделий (разложение на нагретой матрице).

В современное "автогенных" процессах плавка осуществляется за счет тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO 2 , пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Все более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно Никель переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением).

Из силикатных (окисленных) руд Никель также может быть сконцентрирован в штейне при введении в шихту плавки флюсов - гипса или пирита. Восстановительно-сульфидирующую плавку проводят обычно в шахтных печах; образующийся штейн содержит 16-20% Ni, 16-18% S, остальное - Fe. Технология извлечения Никеля из штейна аналогична описанной выше, за исключением того, что операция отделения Cu часто выпадает. При малом содержании в окисленных рудах Со их целесообразно подвергать восстановительной плавке с получением ферроникеля, направляемого на производство стали. Для извлечения Никеля из окисленных руд применяют также гидрометаллургические методы - аммиачное выщелачивание предварительно восстановленной руды, сернокислотное автоклавное выщелачивание и других.

Применение Никеля. Подавляющая часть Ni используется для получения сплавов с другими металлами (Fe, Cr, Cu и другими), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы. Сплавы Никеля используются в конструкциях атомных реакторов.

Значит, количество Никеля расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий Никель в чистом виде применяют для изготовления листов, труб и т. д. Он используется также в химические промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Никель- весьма дефицитный металл и по возможности должен заменяться другими, более дешевыми и распространенными материалами.

Переработка руд Никеля сопровождается выделением ядовитых газов, содержащих SO 2 и нередко As 2 O 3 . Очень токсична СО, применяемая при рафинировании Никеля карбонильным методом; весьма ядовит и легко летуч Ni(CO) 4 . Смесь его с воздухом при 60 °C взрывается. Меры борьбы: герметичность аппаратуры, усиленная вентиляция.

Никель в организме является необходимым микроэлементом. Среднее содержание его в растениях 5,0·10 -5 % на сырое вещество, в организме наземных животных 1,0·10 -6 %, в морских - 1,6·10 -4 %. В животном организме Никель обнаружен в печени, коже и эндокринных железах; накапливается в ороговевших тканях (особенно в перьях). Установлено, что Никель активирует фермент аргиназу, влияет на окислительные процессы; у растений принимает участие в ряде ферментативных реакций (карбоксилирование, гидролиз пептидных связей и других). На обогащенных Никелем почвах содержание его в растениях может повыситься в 30 раз и более, что приводит к эндемическим заболеваниям (у растений - уродливые формы, у животных - заболевания глаз, связанные с повышенным накоплением Никеля в роговице: кератиты, кератоконъюнктивиты).

Открытие долго оспаривалось: современники полагали, что никель - это не самостоятельный металл, а сплав уже известных металлов с мышьяком и серой. Кронстедт настаивал на индивидуальности никеля, ссылаясь в качестве «вещественных доказательств», в частности, на зеленую окраску его соединений и легкость взаимодействия этого «полуметалла» с серой . Кронстедту приходилось бороться не только с физико-химическими, но и с астрологическими доводами своих оппонентов. «Число металлов превосходит уже число планет, в солнечном круге находящихся, - писал Кронстедт, - поэтому ныне размножения числа металлов опасаться не надлежит».

Но Кронстедт умер в 1765 г., так и не дождавшись признания своего открытия. И даже через 10 лет после его смерти во Французской энциклопедии, высшем своде знаний эпохи, было напечатано: «Кажется, что еще должны быть проведены дальнейшие опыты, чтобы убедить пас, есть ли этот королек «никеля», о котором говорит г. Кронстедт, особый полуметалл или его скорее следует считать соединением железа , мышьяка, висмута , кобальта и даже меди с серой».

В том же 1775 г. соотечественник Кронстедта химик и металлург Т. Бергман опубликовал свои исследования, которые убедили многих в том, что никель действительно новый металл. Но окончательно споры улеглись лишь в начале XIX в., когда нескольким крупным химикам впервые удалось выделить чистый никель. Среди них был Ж. Л. Пруст, автор закона постоянства состава химических соединений; интересно, что важным аргументом в пользу индивидуальности никеля Пруст считал своеобразный сладковатый вкус раствора никелевого купороса, резко отличный от неприятного вкуса медного купороса. Другой французский химик, Л. Ж. Тенар, окончательно выяснил магнитные свойства никеля (на их своеобразие указывал еще Бергман).

Полувековые усилия исследователей были подытожены Иеремией Рихтером, который более известен в истории химии как один из основоположников стехиометрии. Чтобы получить чистый никель, Рихтер после обжига купферникеля NiAs на воздухе (для удаления большей части мышьяка), восстановления углем и растворения королька в кислоте проделал 32 перекристаллизации никелевого купороса и затем из этих кристаллов восстановил чистый металл. Полученный этим «весьма многотрудным путем» никель был описан Рихтером в 1804 г. в статье «Об абсолютно чистом никеле, благородном металле, его получении и особых свойствах».

В историю элемента № 28 статья Рихтера вошла как пророческая: в ней были указаны почти все характерные особенности никеля, сделавшие его одним из главнейших металлов современной техники, - большая сопротивляемость коррозии, жаростойкость, высокая пластичность и ковкость, магнитные свойства. Эти особенности и определили пути, по которым никель был направлен человеком.

Металлический никель...

Первые применения никелю придумали ювелиры. Спокойный светлый блеск никеля (вспомним Маяковского: «Облил булыжники лунный никель») не меркнет на воздухе. К тому же никель сравнительно легко обрабатывается. Поэтому его стали применять для изготовления украшений, предметов утвари и звонкой монеты.

Но и это весьма незначительное поле деятельности элемент № 28 получил не сразу, потому что никель, который выплавляли металлурги, был совсем не похож на благородный металл, описанный Рихтером. Он был хрупок и практически непригоден для обработки.

Позже выяснилось, что ничтожной (по нормам столетней давности) примеси серы - лишь 0,03% - достаточно, чтобы вконец испортить механические свойства никеля; происходит это из-за того, что тончайшая пленка хрупкого сернистого никеля разъединяет зерна металла, нарушает его структуру. Примерно так же действует на свойства этого металла и кислород .

Проблему получения ковкого никеля решило одно открытие. Присадка магния в расплавленный металл перед разливкой освобождает никель от примесей: магний активно связывает, «принимает на себя» серу и кислород. Это открытие было сделано еще в 70-х годах позопрошлого века, и с тех пор спрос на никель стал расти.

Вскоре выяснилось, что элемент № 28 - не только декоративный металл (хотя никелированием как средством защиты других металлов от коррозии и для декоративны целей пользуются уже около ста лет). Никель оказался и одним из самых перспективных материалов для изготовления химической аппаратуры, которая должна выдерживать разъедающее действие концентрированных рассолов, горячих щелочей, расплавленных солей, фтора , хлора , брома и других агрессивных сред. Химическую пассивность этот металл сохраняет и при нагреве; жаростойкость проложила никелю дорогу в реактивную технику.

Уникальную совокупность свойств увидели в никеле конструкторы электровакуумных приборов. Не случайно больше трех четвертей всего металла, расходуемого электровакуумной техникой, приходится на чистый никель; из него изготовляют проволочные держатели, вводы, сетки, аноды, экраны, керны для оксидных катодов и ряд других деталей.

Здесь наряду с коррозионной и тепловой стойкостью никеля, его пластичностью и прочностью очень ценится низкая упругость пара: при рабочей температуре около 750°С объем электронной лампы насыщается ничтожным количеством никеля - порядка 10-12 г, которое не нарушает глубокого вакуума.

Магнитные свойства никеля

Во многих отношениях замечательны магнитные свойства никеля. В 1842 г. Дж. П. Джоуль описал увеличение длины стальных прутков при намагничивании. Через 35 лет физики добрались и до химических собратьев железа - кобальта и никеля . И тут оказалось, что кобальтовые прутки тоже удлиняются в магнитном поле, а у никеля этот замечательный эффект не обнаруживается. Еще через несколько лет (в 1882 г.) выяснилось, что никель не только не удлиняется, а, наоборот, даже укорачивается в магнитном поле. Явление было названо магнитострикцией. Сущность его состоит в том, что при наложении внешнего магнитного поля беспорядочно расположенные микромагнитики металла (домены) выстраиваются в одном направлении, деформируя этим кристаллическую решетку. Эффект обратим: приложение механического напряжения к металлу меняет его магнитные характеристики.

Поэтому механические колебания в ферромагнитных материалах затухают гораздо быстрее, чем в неферромагнитных: энергия колебаний расходуется на изменение состояния намагниченности. Понимание природы этого «магнитомеханического затухания» позволило создать не боящиеся усталости сплавы для лопаток турбин и многих других деталей, подвергающихся вибрации.

Но, пожалуй, еще важнее другая область применения магнитомеханических явлений: стерженек из никеля в переменном магнитном поле достаточной частоты становится источником ультразвука. Раскачивая такой стерженек в резонансе (для этого подбирают соответствующую длину), достигают колоссальной для ультразвуковой техники амплитуды колебаний - 0,01% от длины стержня.

Никелевые магнитострикторы были применены, между прочим, при никелировании в ультразвуковом поле: благодаря ультразвуку получаются чрезвычайно плотные и блестящие покрытия, причем скорость их нанесения может быть гораздо выше, чем без озвучивания. Так «никель сам себе помогает».

Никель обнаружен в железных метеоритах. «Масса самородного железа в 71 венский фунт весом, которая выпала на воздуха на глазах у нескольких очевидцев в шесть часов пополудни 26 мая 1751 г. близ деревни Грашина в Хорватии и зарылась в землю на три сажени на незадолго до того вспаханном поле»

Ультразвук имеет и множество других применений. Однако никто, по-видимому, не исследовал воздействия быстропеременного магнитного поля на реакции с участием металлического никеля: вызванная магнитострикцией пульсация поверхности должна была бы существенно повлиять на химическое взаимодействие, так что изучение реакции «звучащего» металла может выявить новые неожиданные эффекты.

Никель и его сплавы

Обратимся теперь к сплавам никеля. Но лучше сказать вернемся: ведь история применения никеля началась со сплавов: одни - железоникелевые - человек получил в готовом виде, другие - медноникелевые - он научился выплавлять из природных руд, еще не зная, какие металлы в них входят.

А сейчас промышленность использует несколько тысяч сплавов, в которые входит никель, хотя и в наше время сочетания железо - никель и медь - никель, предоставленные нам самой природой, остаются основой подавляющего большинства никельсодержащих сплавов. Но, наверное, самое важное - это не количество и разнообразие этих сплавов, а то, что в них человек сумел усилить и развить нужные нам свойства никеля.

Известно, например, что твердые растворы отличаются большей прочностью и твердостью, чем их компоненты, но сохраняют их пластичность. Поэтому металлические материалы, подлежащие обработке посредством ковки, прокатки, протяжки, штамповки и т. п., создают на основе систем, компоненты которых образуют между собой твердые растворы. Именно таковы сплавы никеля с медью: оба металла полностью смешиваются в любых пропорциях как в жидком состоянии, так и при затвердевании расплава. Отсюда - прекрасные механические свойства медно-никелевых сплавов, известные еще древним металлургам.

Праотец многочисленного рода этих сплавов - «пакт-хонг» (или «пекфонг»), который выплавляли в Китае, возможно до нашей эры, дожил до наших дней. Он состоит из меди, никеля (20%) и цинка, причем цинк играет здесь в основном ту же роль, что и магний при приготовлении ковкого никеля. Этот сплав в небольших количествах начали получать в Европе еще в первой половине XIX в. под названиями аргентан, немецкое серебро , нейзильбер (новое серебро) и массой других, причем почти все эти названия подчеркивали красивый - серебряный - внешний вид сплава. Никель обладает интересной «отбеливающей способностью»: уже 20% его полностью гасят красный цвет меди.

«Новое серебро» успешно конкурировало со старым, завоевав популярность у ювелиров. Применили его и для чеканки монет. В 1850 г. Швейцария выпустила первые монеты из нейзильбера, и вскоре ее примеру последовали почти все страны. Американцы даже называют свои пятицентовые монетки «nickel». Масштабы этого применения медноникелевых сплавов огромны: столбик из «никелевых» монет, которые изготовлены в мире за 100 с небольшим лет, достиг бы Луны!

Ныне нейзильбер и родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1% марганца) применяются не только и не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов!) против ударной, или струевой, коррозии. Это отличный материал для кранов, клапанов и особенно конденсаторных трубок.

А вот более молодой сплав меди и никеля - дитя случая и находчивости. В начале XX в. возникли осложнения при переработке богатых канадских руд, содержавших вдвое больше никеля, чем меди; разделение этих двух металлов было твердым орешком для металлургов. Полковник Амброз Монель, тогдашний президент Международной никелевой компании, подал смелую мысль - не разделять медь и никель, а выплавлять их совместно в «натуральный сплав». Инженеры осуществили эту идею - и получился знаменитый монель-металл - один из главнейших сплавов химического машиностроения. Сейчас создано много марок монель-металла, различающихся природой и количеством легирующих добавок, но основа во всех случаях прежняя - 60-70% никеля и 28-30% меди. Высокая химическая стойкость, блестящие механические свойства и сравнительная дешевизна (его и сейчас выплавляют без предварительного разделения меди и никеля) создали монель-металлу славу среди химиков, судостроителей, текстильщиков, нефтяников и даже парфюмеров.

Если монель-металл - «натуральный сплав» из сульфидных медноникелевых руд, то ферроникель - естественный продукт плавки окисленных руд никеля. Отличие состоит в том, что» зависимости от условии плавки в этом продукте можно широко менять соотношение никеля и железа (большую часть железа переводят в шлак). Ферроникель различного состава используют затем в качестве полупродукта для получения многих марок стали и других железоникелевых сплавов.

Видманштеттова структура. В 1808 г. директор Промышленного музея в Вене Алоиз фон Вндманштеттен, получив от своего друга образцы железных метеоритов, отполировал их и протравил азотной кислотой. Возникли изящные линии травления, отражающие характерную структуру сплава

Таких сплавов великое множество. Всем хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. На них уходит почти половина всего никеля, добываемого человеком. Инконель - «аристократический родственник» нержавеющих сталей, в котором железа почти не осталось, это сплав (точнее, группа сплавов на основе никеля и хрома с добавками титана и других элементов. Инконель стал одним из главных материалов ракетной техники. Нихром (20% Cr, 80% Ni) - важнейший из сплавов сопротивления, основа большинства электронагревательных приборов, от домашних электроплиток до мощных промышленных печей. Менее известны элинвар (45% Ni, 55% Fe; легирующие добавки - Cr, Mo, W), сохраняющий постоянную упругость при различных температурах, и платинит (49% Ni, 51% Fe). Последний не содержит платины , но во многих случаях заменяет ее. Как и платину, его можно впаять в стекло, и спай не треснет, поскольку коэффициенты теплового расширения стекла и платинита совпадают. У инвара (36% Ni, 64% Fe) коэффициент теплового расширения близок к нулю.

Особый класс составляют магнитные сплавы. Пожалуй, наибольшие заслуги здесь принадлежат пермаллою FeNi 3 - сплаву с феноменальной магнитной проницаемостью, перевернувшему технику слабых токов. Сердечники из пермаллоя есть в любом телефонном аппарате, а тонкие пермаллойные пленки - главный элемент запоминающих устройств вычислительных машин.

Двигатель американской ракеты «Атлас», работающий при 3200°C, выдерживает эту температуру благодари сотням маленьких никелевых трубок толщиной всего 0,3 мм, образующих стенки камеры сгорания. По этим трубкам проходит жидкое топливо, охлаждающее стенки и само при этом подогревающееся.

Никель - простое вещество, пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен. Относится к тяжелым цветным металлам, в чистом виде на земле не встречается — обычно входит в состав различных руд, высокой твердостью, хорошо полируется, является ферромагнетиком — притягивается магнитом, в периодической системе Менделеева обозначается символом Ni и имеет 28 порядковый номер.

Смотрите так же:

СТРУКТУРА

Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 å нм, пространственная группа Fm3m. Эта кристаллическая структура устойчива к давлению, по меньшей мере 70 ГПа. При обычных условиях никель существует в виде b-модификации, имеющей гранецентрированную кубическую решётку (a = 3,5236 å). Но никель, подвергнутый катодному распылению в атмосфере h 2 , образует a-модификацию, имеющую гексагональную решётку плотнейшей упаковки (а = 2,65 å, с = 4,32 å), которая при нагревании выше 200 °С переходит в кубическую. Компактный кубический никель имеет плотность 8,9 г/см 3 (20 °С), атомный радиус 1,24 å

СВОЙСТВА

Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500 Мн/м 2 , предел упругости 80 Мн/м 2 , предел текучести 120 Мн/м 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м 2 ; твёрдость по Бринеллю 600-800 Мн/м 2 . В температурном интервале от 0 до 631К (верхняя граница соответствует Кюри точке). Ферромагнетизм никеля обусловлен особенностями строения внешних электронных оболочек его атомов. Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монель-металл, инвар и др.).

ЗАПАСЫ И ДОБЫЧА

Никель довольно распространён в природе - его содержание в земной коре составляет около 0,01%(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8%). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 - 0,41% Ni.
В растениях в среднем 5·10 −5 весовых процентов никеля, в морских животных - 1,6·10 −4 , в наземных - 1·10 −6 , в человеческом организме - 1…2·10 −6 .

Основную массу никеля получают из гарниерита и магнитного колчедана.
Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5-8% Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
Карбонильный способ (метод Монда): Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением которого выделяют особо чистый металл.
Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al 2 O 3

ПРОИСХОЖДЕНИЕ

Месторождения сульфидных медно-никелевых руд связаны с лополитоподобными или плитообразными массивами расслоенных габброидов, приуроченных к зонам глубинных разломов на древних щитах и платформах. Характерной особенностью медно-никелевых месторождений всего мира является выдержанный минеральный состав руд: пирротин, пентландит, халькопирит, магнетит; кроме них в рудах встречаются пирит, кубанит, полидимит, никелин, миллерит, виоларит, минералы группы платины, изредка хромит, арсениды никеля и кобальта, галенит, сфалерит, борнит, макинавит, валлерит, графит, самородное золото.

Экзогенные месторождения силикатных никелевых руд повсеместно связаны с тем или иным типом коры выветривания серпентенитов. при выветривании происходит стадийное разложение минералов, а также перенос подвижных элементов, с помощью воды из верхних частей коры в нижние. Там эти элементы выпадают в осадок в виде вторичных минералов.
В месторождениях этого типа заключены запасы никеля в 3 раза превышающие его запасы в сульфидных рудах, а запасы некоторых месторождений достигают 1 млн т. и более никеля. Крупные запасы силикатных руд сосредоточены на Новой Каледонии, Филиппинах, Индонезии, Австралии и др. странах. Среднее содержание в них никеля равно 1.1-2%. Кроме того в рудах часто содержится кобальт.

ПРИМЕНЕНИЕ

Подавляющая часть никеля используется для получения сплавов с другими металлами (fe, cr, cu и др.), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы. Сплавы никеля используются в конструкциях атомных реакторов.

Значительное количество никеля расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий никель в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Никель - весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.

Применяется при изготовлении брекет-систем (никелид титана), протезирования. Широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель». Также никель используется для производства обмотки струн музыкальных инструментов.

Никель (англ. Nickel) — Ni

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.08-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.17.2
Dana (8-ое издание) 1.1.11.5
Hey’s CIM Ref 1.61
Подробности Категория: Просмотров: 4592

НИКЕЛЬ , Ni, химический элемент VIII группы периодической системы, принадлежащий к триаде т. н. железных металлов (Fe, Со, Ni). Атомный вес 58,69 (известны 2 изотопа с атомным весом 58 и 60); порядковый номер 28; обычная валентность Ni равна 2, реже - 4, 6 и 8. В земной коре никель более распространен, чем кобальт, составляя около 0,02% ее по весу. В свободном состоянии никель встречается только в метеорном железе (иногда до 30%); в геологических образованиях он содержится исключительно в виде соединений - кислородных, сернистых, мышьяковистых, силикатов и т. п. (см. Никелевые руды).

Свойства никеля . Чистый никель - серебристо-белый металл с сильным блеском, не тускнеющим на воздухе. Он тверд, тугоплавок и легко полируется; при отсутствии примесей, (особенно серы) он весьма гибок, ковок и тягуч, способен развальцовываться в очень тонкие листы и вытягиваться в проволоку диаметром менее 0,5 мм. Кристаллическая форма никеля - куб. Удельный вес 8,9; литые изделия имеют удельный вес ~8,5; прокаткой он м. б. увеличен до 9,2. Твердость по Мосу ~5, по Бринеллю 70. Предельное сопротивление на разрыв 45-50 кг/мм 2 , при удлинении 25-45%; модуль Юнга Е 20 = (2,0-2,2)х10 6 кг)см 2 ; модуль сдвига 0,78·10 6 кг/см 2 ; коэффициент Пуассона μ =0,3; сжимаемость 0,52·10 -6 см 2 /кг; температура плавления никеля по позднейшим наиболее точным определениям равна 1455°С; температура кипения - в пределах 2900-3075°С.

Линейный коэффициент термического расширения 0,0000128 (при 20°С). Теплоемкость: удельная 0,106 cal/г, атомная 6,24 cal (при 18°С); теплота плавления 58,1 cal/г; теплопроводность 0,14 cal см/см 2 сек. °С (при 18°С). Скорость звукопередачи 4973,4 м/сек. Удельное электрическое сопротивление никеля при 20°С равно 6,9-10 -6 Ω-см с температурным коэффициентом (6,2-6,7)·10 -3 . Никель принадлежит к группе ферромагнитных веществ, но магнитные свойства его уступают таковым железа и кобальта; для никеля при 18°С предел намагничения J m = 479 (для железа J m = 1706); точка Кюри 357,6°С; магнитная проницаемость как самого никеля, так и его ферросплавов значительна (см. ниже). При обыкновенной температуре никель вполне устойчив по отношению к атмосферным влияниям; вода и щелочи, даже при нагревании, на него не действуют. Никель легко растворяется в разбавленной азотной кислоте с выделением водорода и значительно труднее - в НСl, H 2 SO 4 и концентрированная HNО 3 . Будучи накален на воздухе, никель окисляется с поверхности, но лишь на незначительную глубину; в нагретом состоянии он легко соединяется с галоидами, серой, фосфором и мышьяком. Рыночными сортами металлического никеля являются следующие: а) обыкновенный металлургический никель, получаемый восстановлением из его окислов при помощи угля, содержит обычно от 1,0 до 1,5% примесей; б) ковкий никель, получаемый из предыдущего переплавлением с добавкой около 0,5% магния или марганца, содержит примесь Mg или Мn и почти не содержит серы; в) никель, приготовленный по способу Монда (через никелькарбонил) - наиболее чистый продукт (99,8-99,9% Ni). Обычными примесями в металлургическом никеле являются: кобальт (до 0,5%), железо, медь, углерод, кремний, окислы никеля, сера и окклюдированные газы. Все эти вещества, за исключением серы, мало влияют на технические свойства никеля, понижая лишь его электропроводность и несколько повышая твердость. Сера (присутствующая в форме сульфида никеля) резко уменьшает ковкость и механическую прочность никеля, особенно при повышенной температуре, что замечается даже при содержании <0,005% S. Вредное влияние серы объясняется тем, что сульфид никеля, растворяясь в металле, дает хрупкий и низкоплавкий (температура плавления около 640°С) твердый раствор, образующий прослойки между кристаллитами чистого никеля.

Применение никеля . Основная масса металлургического никеля идет на изготовление ферроникеля и никелевой стали. Крупным потребителем никеля является также производство различных специальных сплавов (см. ниже) для электропромышленности, машиностроения и химического аппаратуростроения; эта область применения никеля за последние годы показывает тенденцию к усиленному росту. Из ковкого никеля готовят лабораторные аппараты и посуду (тигли, чашки), кухонную и столовую посуду. Большие количества никеля расходуются для никелирования железных, стальных и медных изделий и в производстве электрических аккумуляторов. Из химически чистого никеля изготовляются ламповые электроды для радиотехнической аппаратуры. Наконец восстановленный чистый никель в виде порошка является наиболее употребительным катализатором при всевозможных реакциях гидрирования (и дегидрирования), например, при гидрогенизации жиров, ароматических углеводородов, карбонильных соединений и т. д.

Никелевые сплавы . Качественный и количественный состав применяемых никелевых сплавов весьма разнообразен. Техническое значение имеют сплавы никеля с медью, железом и хромом (в самое последнее время также с алюминием), - часто с добавкой третьего металла (цинка, молибдена, вольфрама, марганца и др.) и с определенным содержанием углерода или кремния. Содержание никеля в этих сплавах варьирует от 1,5 до 85%.

Сплавы Ni-Cu образуют твердый раствор при любом соотношении компонентов. Они стойки по отношению к щелочам, разбавленной H 2 SО 4 и нагреву до 800°С; антикоррозионные свойства их растут с увеличением содержания Ni. Из сплава 85% Cu+15% Ni изготовляются оболочки для пуль, из сплава 75% Си + 25% Ni - мелкая разменная монета. Сплавы с 20-40% Ni служат для изготовления труб в конденсационных установках; такие же сплавы употребляются для облицовки столов в кухнях и буфетах и для изготовления штампованных орнаментальных украшений. Сплавы с 30-45% Ni идут на производство реостатной проволоки и стандартных электрических сопротивлений; сюда относятся например, никелин и константан. Сплавы Ni-Cu с высоким содержанием Ni (до 70%) отличаются большой химической устойчивостью и широко применяются в аппарато- и машиностроении. Наибольшим распространением пользуется монель-металл.

Сплавы Ni-Cu-Zn достаточно стойки по отношению к органическим кислотам (уксусной, винной, молочной); при содержании около 50% меди они объединяются под общим названием нейзильбера . Более богатый медью аппаратурный сплав амбарак содержит 20% Ni, 75% Сu и 5% Zn; по устойчивости он уступает монель-металлу. Сплавы типа бронзы или латуни, содержащие в своем составе никель, называют иногда также никелевой бронзой.

Сплавы Ni-Cu-Mn , содержащие 2-12% Ni, под названием манганина употребляются для электрических сопротивлений; в электроизмерительных приборах применяется сплав из 45-55% Ni, 15-40% Мn и 5-40% Сu.

Сплавы Ni-Cu-Сг стойки по отношению к щелочам и кислотам, за исключением НСl.

Сплавы Ni-Cu-W за последнее время получили большое значение как ценные кислотоупорные материалы для химической аппаратуры; при содержании 2-10% W и не свыше 45% Сuони хорошо вальцуются и весьма устойчивы к горячей H 2 SO 4 . Наилучшими качествами обладает сплав состава: 52% Ni, 43% Сu, 5% W; допустима небольшая примесь Fe.

Сплавы Ni-Cr . Хром растворяется в никеле до 60%, никель в хроме до 7%; в сплавах промежуточного состава имеются кристаллические решетки обоих типов. Эти сплавы стойки по отношению к влажному воздуху, щелочам, разбавленным кислотам и к H 2 SО 4 ; при содержании 25% Сг и более, они устойчивы и против HNO 3 ; добавка ~2% Ag делает их легко вальцующимися. При 30% никеля сплав Ni-Cr вполне лишен магнитных свойств. Сплав, содержащий 80-85% Ni и 15-20% Сг, наряду с высоким электрическим сопротивлением весьма устойчив к окислению при высоких температурах (выдерживает нагревание до 1200°С); он применяется в электрических печах сопротивления и хозяйственных нагревательных приборах (электрические утюги, жаровни, плиты). В США из Ni-Cr изготовляются литые трубы для высоких давлений, применяемые в заводской аппаратуре.

Сплавы Ni-Mo обладают высокой кислотоупорностью (при >15% Мо), но не получили распространения вследствие их дороговизны.

Сплавы Ni-Mn (с 1,5-5,0% Мn) стойки по отношению к щелочам и влаге; техническое применение их ограничено.

Сплавы Ni-Fe образуют непрерывный ряд твердых растворов; они составляют обширную и технически важную группу; в зависимости от содержания углерода они носят характер либо стали, либо чугуна. Обычные сорта никелевой стали (перлитовой структуры) содержат 1,5-8% Ni и 0,05- 0,50% С. Присадка никеля делает сталь очень вязкой и значительно повышает ее предел упругости и ударное сопротивление на изгиб, не нарушая ковкости и свариваемости. Из никелевой стали готовят ответственные детали машин, например передаточные валы, оси, шпиндели, цапфы, зубчатые сцепления и т. п., а также многие детали артиллерийских конструкций; сталь с 4-8% Ni и <0,15% С хорошо поддается цементации. Введение никеля в чугуны(>1,7% С) способствует выделению углерода (графита) и разрушению цементита; никель повышает твердость чугуна, его сопротивление на растяжение и изгиб, способствует равномерному распределению твердости в отливках, облегчает механическую обработку, придает мелкозернистость и уменьшает образование пустот в литье. Никелистый чугун применяется как щелочеупорный материал для химической аппаратуры; наиболее пригодны для этой цели чугуны с содержанием 10-12% Ni и ~1 % Si. Сталеподобные сплавы с более высоким содержанием никеля (25-46% Ni при 0,1-0,8% С) имеют аустенитовую структуру; они очень стойки к окислению, к действию горячих газов, щелочей и уксусной кислоты, обладают высоким электрическим сопротивлением и весьма малым коэффициентом расширения. Эти сплавы почти не магнитны; при содержании Ni в пределах 25-30% они вполне утрачивают магнитные свойства; магнитная проницаемость их (в полях низкой напряженности) растет с увеличением содержания никеля и м. б. еще повышена специальной термической обработкой. К сплавам этой категории относятся: а) ферроникель (25% Ni при 0,3-0,5% С), идущий на изготовление клапанов моторов и других машинных частей, работающих при повышенной температуре, а также немагнитных частей электрических машин и реостатной проволоки; б) инвар ; в) платинит (46% Ni при 0,15% С) применяется в электролампах вместо платины для впаивания проводов в стекло. Сплав пермаллой (78% Ni при 0,04% С) имеет магнитную проницаемость μ = 90000 (в поле напряженностью 0,06 гаусса); предел намагничения I m = 710. Некоторые сплавы этого типа идут на изготовление подводных электрических кабелей.

Сплавы Ni-Fe-Cr - также очень важная в техническом отношении группа. Хромоникелевая сталь , употребляемая в машино- и моторостроении, содержит обычно 1,2-4,2% Ni, 0,3-2,0% Сг и 0,12-0,33% С. Кроме высокой вязкости она обладает и значительной твердостью и сопротивляемостью износу; временное сопротивление на разрыв, в зависимости от характера термической обработки, колеблется между 50 и 200 кг/мм 2 ; идет на изготовление коленчатых валов и других деталей двигателей внутреннего сгорания, частей станков и машин, а также артиллерийской брони. В сталь для лопаток паровых турбин, с целью повышения твердости, вводится большое количество хрома (от 10 до 14%). Хромоникелевые стали с содержанием >25% Ni хорошо противостоят действию горячих газов и обладают минимальной текучестью: они могут подвергаться значительным усилиям в условиях высокой температуры (300-400°С), не обнаруживая остаточных деформаций; употребляются для изготовления клапанов к моторам, частей газовых турбин и конвейеров для высокотемпературных установок (например, печей для отжига стекла). Сплавы Ni-Fe-Cr, содержащие >60% Ni, служат для изготовления литых машинных деталей и низкотемпературных частей электрических нагревательных приборов. Как аппаратурный материал, сплавы Ni-Fe-Cr обладают высокими антикоррозионными свойствами и довольно устойчивы по отношению к HNО 3 . В химическом аппаратостроении пользуются хромоникелевой сталью, содержащей 2,5-9,5% Ni и 14-23% Сг при 0,1-0,4% С; она почти не магнитна, устойчива к HNО 3 , горячему аммиаку и к окислению при высоких температурах; присадка Мо или Сu повышает стойкость к горячим кислотным газам (SО 2 , НСl); повышение содержания Ni увеличивает способность стали к механической обработке и стойкости к H 2 SO 4 , но уменьшает стойкость к HNO 3 . Сюда относятся крупповские нержавеющие стали (V1M,V5M) и кислотоупорные стали (V2A, V2H и др.); термическая обработка их заключается в нагреве до ~ 1170°С и закалке в воде. В качестве щелочеупорного материала применяют никель-хромистый чугун (5-6% Ni и 5-6% Сг при содержании >1,7% С). Сплав нихром, содержащий 54-80% Ni, 10-22% Сг и 5-27% Fe, иногда с добавкой Сu и Мn, устойчив к окислению в пределах температур до 800°С и находит применение в нагревательных приборах (этим же названием иногда обозначают описанные выше сплавы Ni-Cr, не содержащие Fe).

Сплавы Ni-Fe-Mo предлагались как аппаратурный материал. Наивысшей кислотоупорностью и антикоррозионными свойствами обладает сплав из 55-60% Ni, 20% Fe и 20% Мо, при содержании < 0,2% С; присадка небольшого количества V еще более повышает кислотоупорность; Мn м. б. вводим в количестве до 3%. Сплав вполне устойчив по отношению к холодным кислотам (НСl, H 2 SO 4), за исключением HNO 3 , и к щелочам, но разрушается хлором и окислителями в присутствии кислот; он имеет твердость по Бринеллю >200, хорошо вальцуется, куется, отливается и обрабатывается на станках.

Сплавы Ni-Fe-Cu применяются в химической аппаратуре (сталь с 6-11% Ni и 16-20% Сu).

Сплавы Ni-Fe-Si . Для постройки кислотоупорной аппаратуры применяются кремненикелевые стали марки «дуримет» (Durimet), содержащие 20-25% Ni (или Ni и Сг в отношении 3:1) и ~ 5% Si, иногда с добавкой Сu. Они устойчивы к холодным и горячим кислотам (H 2 SО 4 , HNO 3 , СН 3 ·СООН) и соляным растворам, менее устойчивы к НСl; хорошо поддаются горячей и холодной механической обработке.

В сплавах Ni-AI имеет место образование химического соединения AINi, растворяющегося в избытке одного из компонентов сплава.

Техническое значение начинают приобретать сплавы, основой которых является система Ni-AI-Si . Они оказались весьма стойкими по отношению к HNО 3 и к холодной и горячей H 2 SО 4 , но механической обработке почти не поддаются. Таков, например, новый кислотоупорный сплав для литых изделий, содержащий около 85% Ni, 10% Si и 5% Аl (или Аl + Сu); его твердость по Бринеллю около 360 (отжигом при 1050°С снижается до 300).

Металлургия никеля . Главной областью применения никеля является производство специальных сортов стали. Во время войны 1914-18 гг. для этой цели расходовалось не менее 75% всего никеля; в нормальных же условиях ~65%. Никель широко применяется также в сплавах его с нежелезными (цветными) металлами, гл. обр. с медью (~ 15%). Остальное количество никеля идет: на изготовление никелевых анодов - 5%, ковкого никеля - 5% и разных изделий - 10%.

Центры производства никеля неоднократно перемещались из одних местностей земного шара в другие, что объяснялось наличием благонадежных рудных месторождений и общей экономической конъюнктурой. Промышленная выплавка никеля из руд началась в 1825-26 г. в Фалуне (Швеция), где был найден никель, содержащий серный колчедан. В 90-х годах прошлого века шведские месторождения оказались по-видимому практически исчерпанными. Лишь во время войны 1914-18 гг., в связи с повышением спроса на металлический никель, Швеция давала несколько десятков тонн этого металла (максимум 49 т в 1917 г.). В Норвегии производство началось в 1847-50 гг.

Главной рудой здесь являлись пирротины с содержанием в среднем 0,9-1,5% Ni. Производство в Норвегии в небольших размерах (максимум - около 700 т в год во время войны 1914-18 гг.) существует и по настоящее время. В середине прошлого века центр никелевой промышленности сосредоточился в Германии и Австро-Венгрии. Сначала она базировалась здесь исключительно на мышьяковистых рудах Шварцвальда и Гладбаха, а с 1901 года, и в особенности во время войны 1914-18 гг., на окисленных рудах Силезии (Франкенштейн). Разработка месторождений никелевых руд в Новой Каледонии началась в 1877 г. Благодаря использованию этих руд мировое производство никеля в 1882 г. достигло почти 1000 т. Добытая здесь руда перерабатывалась на месте лишь в ограниченных количествах, главная же ее масса отправлялась в Европу. Лишь в последние годы, вследствие повышенных транспортных тарифов, в Европу импортируются гл. обр. богатые штейны, содержащие 75-78% Ni, в количестве никеля около 5000 т в год. В настоящее время предположено получать металлический никель в Новой Каледонии, для чего обществом «Никель» сооружается рафинировочный завод, который будет пользоваться электрической энергией гидростанции на реке Ятэ. Никелевая промышленность в Канаде (Северная Америка) возникла в конце 80-х гг. прошлого столетия. До последнего времени здесь существовали две фирмы; одна английская - Mond Nickel Со. и другая американская - International Nickel Со. В конце 1928 года обе фирмы объединились в мощный мировой трест под названием International Nickel Company of Canada, поставляющий на рынок около 90% мировой производительности никеля и эксплуатирующий месторождения, расположенные вблизи г. Седбюри. Фирма Mond Nickel Со. проплавляет свои руды на заводе в Конистоне на штейн, который для дальнейшей переработки отправляется в Англию на завод в Клейдаке. Фирма International Nickel Со. выплавленный на заводе в Конперклифе штейн отправляет для получения металла на завод в Порт- Кольборн. Мировое производство никеля в последние годы достигает 40000 т.

Переработка никелевых руд производится исключительно сухим путем. Гидрометаллургические способы, неоднократно рекомендовавшиеся для переработки руд, не нашли пока применения в практике. Эти способы в настоящее время иногда применяются лишь к переработке промежуточных продуктов (штейнов), получаемых в результате переработки руд сухим путем. Применение сухого пути к переработке никелевых руд (как сернистых, так и окисленных) характеризуется осуществлением одного и того же принципа постепенной концентрации ценных составляющих руды, в виде тех или иных продуктов, которые уже затем перерабатываются на металлы, подлежащие извлечению. Первая стадия такой концентрации пенных составляющих никелевый руд осуществляется рудной плавкой на штейн. В случае сернистых руд, последние плавятся в сыром или в предварительно обожженном состоянии в шахтных или пламенных печах. Окисленные руды плавятся и шахтных печах с добавкой в их шихту серу содержащих материалов. Штейн рудной плавки, роштейн , оказывается не пригодным для его непосредственной переработки на содержащиеся в нем ценные металлы, благодаря их сравнительно незначительной концентрации в этом продукте. В виду этого штейн рудной плавки подвергается дальнейшей концентрации или путем обжига его с последующей плавкой в шахтной печи, или путем окислительной плавки на поду пламенной печи, или в конвертере. Эти сократительные, или концентрационные, штейновые плавки, производимые на практике одно- или многократно, конечной своей целью имеют получение чистого наиболее концентрированного штейна (файнштейна ), состоящего лишь из сульфидов ценных металлов с некоторым количеством последних, находящихся в свободном состоянии. Файнштейны, получаемые на практике, бывают двух родов в зависимости от их состава. При переработке окисленных новокаледонских руд, не содержащих в себе других кроме никеля ценных металлов, файнштейн представляет сплав сульфида никеля (Ni 3 S 2) с некоторым количеством металлического никеля. В результате же переработки сернистых канадских руд, содержащих и никель и медь, получаемый файнштейн представляет сплав сульфидов меди и никеля с некоторым количеством этих металлов в свободном состоянии. В зависимости от состава файнштейна меняется и их переработка на чистые металлы. Наиболее простой является переработка файнштейна, содержащего один только никель; переработка медно-никелевого файнштейна сложнее и м.б. осуществлена различными путями. Переработка окисленных руд на штейн с серосодержащими добавками (гипсом) была предложена Гарниери в 1874 г. Переработка этих руд во Франкенштейне (Германия) производилась следующим образом. К рудной смеси, содержавшей 4,75 % Ni, прибавлялось 10% гипса или 7% ангидрита и 20% известняка; сюда же прибавлялось и некоторое количество плавикового шпата. Вся эта смесь тщательно перемешивалась, измалывалась и затем прессовалась в кирпичи, которые после высушивания проплавлялись в шахтной печи расходом кокса в 28-30% от веса руды. Суточная производительность шахтной печи доходила до25т руды. Сечение печи на уровне фурм равно 1,75 м 2 ; высота ее 5 м. Нижняя часть шахты на высоту 2 м имела ватер-жакеты. Шлаки сильно кислые; в них терялось 15% Ni. Состав роштейна: 30-31% Ni; 48-50% Fe и 14-15% S. Роштейн гранулировался, дробился, обжигался и переплавлялся в вагранке в смеси с 20% кварца и при расходе кокса в 12-14% от веса обожженного роштейна на концентрированный штейн следующего среднего состава: 65% Ni, 15% Fe и 20% S. Последний конвертировался на файнштейн: 77,75% Ni, 21% S, 0,25-0,30% Fe и 0,15-0,20% Сu. Тщательно измельченный файнштейн подвергается обжигу в пламенных печах (с ручным перегребанием или механическим) до полного удаления серы. В конце обжига к обжигаемой массе прибавляют некоторое количество NaNО 3 и Na 2 CО 3 не только для того, чтобы облегчить выгорание серы, но и для того, чтобы присутствующие иногда в штейне As и Sb перевести в сурьмяно- и мышьяковокислые соли, которые затем выщелачиваются водою из обожженного продукта. Полученная в результате обжига NiO подвергается восстановлению, для чего закись никеля смешивается с мукой и водой и из полученного теста формуют кубики, которые затем нагревают в тиглях или ретортах. Под конец восстановления температура поднимается до 1250°С, что способствует свариванию отдельных восстановленных частиц Ni в сплошную массу.

Фирма International Nickel Со. перерабатывает свои сернистые руды след. обр. Рудная плавка в зависимости от их крупности ведется либо в шахтных либо в пламенных печах. Кусковые руды подвергаются предварительному обжигу в кучах; продолжительность обжига от 8 до 10 месяцев. Обожженная руда плавится в смеси с некоторым количеством необожженной руды в шахтных печах. Флюсов не добавляется, т. к. руда самофлюсующаяся. Расход кокса 10,5% от веса рудной смеси. В сутки проплавляется в печи около 500 т руды. Штейн рудной плавки подвергается конвертированию на файнштейн. Конвертерный шлак частью возвращается в конвертер, частью идет в шихту рудной плавки. Состав руд и продуктов приведен в табл.:

Мелкая руда подвергается обжигу в Веджа печах до содержания серы в 10-11% и затем плавке в пламенной печи. Конвертерный шлак, содержащий 79,5% (Сu + Ni), 20% S и 0,30% Fe, перерабатывается процессом Орфорда, состоящим в переплавке файнштейна в присутствии Na 2 S. Последний вызывает расслаивание продуктов плавки на два слоя: верхний, представляющий сплав Cu 2 S + Na 2 S, и нижний, содержащий почти чистый сульфид никеля. Каждый из этих слоев перерабатывается на соответствующий металл. Верхний, медьсодержащий, слой по отделении от него Na 2 S подвергается конвертированию, а нижний, никелевый, слой подвергается хлорирующему обжигу, выщелачиванию (причем он освобождается от некоторого содержащегося в нем количества меди), и полученная т. о. закись никеля восстанавливается. Некоторое количество медно-никелевого файнштейна подвергается окислительному обжигу и последующей восстановительной плавке на медно-никелевый сплав, известный под названием Монель-металла.

Фирма Mond Nickel Со. свои руды обогащает; полученные концентраты подвергаются спекающему обжигу на машинах Dwight- Lloyd’a, агломерат с которых идет в шахтную печь. Штейн рудной плавки подвергается конвертированию, полученный файнштейн перерабатывается способом Mond ’а, для чего файнштейн дробится, обжигается и выщелачивается H 2 SО 4 для удаления большей части меди в виде CuSО 4 . Остаток, содержащий NiO с некоторым количеством меди, высушивается и поступает в аппарат, где он восстанавливается при 300°С водородом (водяной газ). Восстановленный, мелко раздробленный никель поступает в следующий аппарат, где он приводится в соприкосновение с СО; при этом образуется летучий карбонат никеля - Ni(CO) 4 , который переводится в третий аппарат, где поддерживается температура 150°С. При этой температуре Ni(CO) 4 разлагается на металлический Ni и СО. Получающийся этим путем металлический никель содержит 99,80% Ni.

Помимо указанных двух способов получения никеля из медно-никелевого файнштейна существует еще способ Hybinette, дающий возможность получать никель электролитическим путем. Электролитический никель содержит: 98,25% Ni; 0,75% Со; 0,03% Сu; 0,50% Fe; 0,10% С и 0,20% Рb.

Вопрос о производстве никеля в СССР имеет столетнюю историю. Уже в 20-х годах прошлого века были известны никелевые руды на Урале; одно время уральские месторождения никелевых руд, содержащие около 2% Ni, рассматривались как один из главных источников сырья для мировой никелевой промышленности. После открытия никелевых руд на Урале М. Даниловым, П. А. Демидовым и Г. М. Пермикиным был произведен целый ряд опытов по их переработке. В Ревдинске за 1873-77 гг. было получено 57,3 т металлического никеля. Но дальнейшее разрешение поставленной задачи было прекращено после открытия более богатых и мощных месторождений никелевых руд в Новой Каледонии. Вопрос об отечественном никеле был снова поставлен на разрешение под влиянием обстоятельств, вызванных войной 1914-18 гг. Летом 1915 года на Уфалейском заводе были произведены П. М. Бутыриным и В. Е. Васильевым опыты выплавки штейна в пламенной печи. В это же время велись опыты по извлечению никеля из Уфалейских руд в петербургском Политехническом институте Г. А. Кащенко под руководством проф. А. А. Байкова, а осенью 1915 г. велись пробные плавки в пламенной печи на заводе. Летом 1916 г. на Ревдинском заводе были произведены опыты выплавки медно-никелевых штейнов из бедных никелевых руд (0,86% Ni) и бедных медью колчеданов (1,5% Сu). Плавка велась в шахтной печи. В это же время в доменной печи проплавлялись ревдинские никельсодержащие бурые железняки на никелистый чугун (весь никель руды при этом концентрируется в чугуне), поставлявшийся по контракту с морским ведомством на его ленинградские заводы. Все перечисленные исследования вследствие целого ряда обстоятельств не получили в то время завершения в форме соответствующих заводских процессов. В последние годы проблема получения никеля из уральских руд снова встала на разрешение, и практическое осуществление ее, сообразно содержанию никеля в рудах, должно происходить в двух направлениях. Содержание никеля в уральских рудах - невысокое, и по нему руды делятся на два сорта: 1-й и 2-й. Руды 1-го сорта, пригодные для пирометаллургической переработки, в среднем содержат около 3% Ni; руды 2-го сорта - около 1,5% и ниже. Последние руды не м. б. подвергнуты переработке плавкой без предварительного их обогащения. Другая возможность переработки бедных никелевых руд - путь гидрометаллургический; он д. б. еще изучен. В настоящее время для переработки руд 1-го сорта на Урале строится завод.

С серебром – то сегодня промышленностью на постоянной основе используется чуть ли не вся таблица элементов Менделеева.


Одно из почётных мест в списке наиболее важных для металлургии элементов занимает никель – серебристый, очень блестящий металл, обладающий рядом полезнейших качеств.

Что такое никель?

История не сохранила имени человека, открывшего никель, так как этот металл известен людям очень давно. Первые его образцы были найдены в содержимом метеоритов, поэтому представляли собой огромную редкость. Они использовались для изготовления талисманов и «заколдованного» оружия, которое никогда не покрывалось ржавчиной.

Никелевая руда в Средневековье часто встречалась в медных рудниках Саксонии, но тогда люди не умели выплавлять из неё металл. Немецкие рудокопы называли её «купферникелем», или ложной медью, и презрительно отбрасывали. Бытовало поверье, что зловредный гном Старый Ник превращает медную руду в негодные камни. Выделить из никелевой руды чистый металл сумел в 1775 году шведский естествоиспытатель А. Кронстедт, но найти ему применение тогда не смогли.

Обладая хорошей пластичностью, никель легко куётся и практически не окисляется под действием воздуха или воды, покрываясь тонкой оксидной плёнкой, которая защищает его от дальнейшего окисления. Но если измельчить металл до состояния порошка, то при контакте с воздухом он легко вспыхнет, окисляясь с выделением большого количества тепла. Температура его плавления достаточно высока и достигает 1455 градусов Цельсия.


Это металл серебристого цвета с лёгкой желтизной, обладающий сильным блеском и легко полирующийся. Ему присущи ферромагнитные качества, т.е. он притягивается магнитом. Высокая твёрдость и коррозионная стойкость сделали его чрезвычайно востребованным современной промышленностью.

Для чего нужен никель?

Основная сфера применения никеля сегодня – это производство высоколегированных нержавеющих сталей. Добавляя в расплав железа никель и хром, металлурги выплавляют чрезвычайно прочные, но в то же время пластичные сплавы с высокой коррозионной стойкостью. Поверхность металла получается блестящей и хорошо поддаётся полировке, причём сплавы сохраняют свои качества при длительном и многократном нагревании до высоких температур.

Нержавеющая и термостойкая сталь необходима в ряде отраслей промышленности, в первую очередь – в пищевом производстве, нефтехимии, авиастроении, автомобильном производстве, станкостроении и т.д. Военная промышленность выпускает броневую сталь, содержащую никель.

Не менее востребованы никельсодержащие стали в строительной отрасли. Из них изготавливают интерьерные элементы зданий – перила, ограждения, балюстрады, элементы входных групп. В мебельной промышленности сегодня используются профилированные элементы из нержавеющей полированной стали, фурнитура, мебельные механизмы и т.д. Ещё одна широчайшая сфера применения никеля – изготовление из нержавеющей стали разнообразной домашней утвари (посуды, столовых приборов и др.) и бытовых приборов.

Часто никель используется для защиты чугунных и стальных изделий от коррозии в качестве покрытия. Никелирование производится химическим и гальваническим способами. Никелированные конструкционные детали необходимы в химической промышленности, в производстве щелочных аккумуляторов для автотехники, так как этот металл устойчиво к воздействию кислотных и щелочных растворов. Никель и его соединения нередко выступают катализаторами в ряде химических процессов. Нагревательные элементы, содержащие никель (алюмелевые, нихромовые, пермаллой, монель и т.д.), обладают высокой тепловой эффективностью и используются как в промышленном оборудовании, так и в бытовой технике.


Благодаря яркому блеску и высокой твёрдости никель во многих государствах входит в состав монет. В отличие от более мягких серебра и меди, никельсодержащие монеты используются в течение десятков лет, практически не истираясь. Конечно, блеск понемногу тускнеет, но даже старые монеты обладают прекрасно сохранившимся тиснением.

© 2024 softlot.ru
Строительный портал SoftLot