Водородные топливные элементы и энергетические системы. Водородные топливные элементы: от полетов «Аполлона» до автомобилей.

Водородные топливные ячейки – энергия будущего[ 2012-02-14 ]

Новые источники энергии для электротранспорта.

С приходом эпохи промышленной революции, человечество стало испытывать недостаток в мощных источниках энергии. Получение энергии с помощью работы пара, - первая массовая технология превращения тепловой энергии в механическую,- процесс довольно несовершенный. В качестве топлива для паровых котлов использовались невозобновляемые ресурсы - уголь и мазут. И хотя до середины 20 века, это ещё не рассматривалось как серьёзный недостаток, малый КПД таких систем, который даже вошёл в поговорку («КПД - как у паровоза») и смог от дыма в промышленных районах, вынуждал ученых и инженеров искать новые пути получения энергии. Тут и пришли на помощь чистые и мощные источники - водородные топливные ячейки, к созданию которых учёные подбирались целых полтора века.

История водородной энергетики.

В 1839 году английский исследователь Уильям Грове прославился благодаря созданию постоянного гальванического элемента (элемент Грове), но в истории он запомнился не только этим изобретением. Во время экспериментов с электролитической ячейкой, исследуя процесс электролиза, ученый открыл процесс электрохимического холодного горения водорода. Это явление стало знаменательным событием в энергетике и сыграло большую роль в развитии электрохимии, а впоследствии привело к созданию первых топливных элементов.

В 1889 году изобретателями Людвигом Мондом и Чарльзом Лангером был предложен термин «топливный элемент». Они пытались создать устройство для выработки энергии из угольного газа и воздуха, используя реакции окисления органического топлива.

Множество исследователей по всему миру продолжали исследования в этой сфере, например, ученый Спиридонов изобрёл водородно-кислородный элемент с плотностью тока 30 мА на 1см2 рабочей поверхности.

В 20-х годах 20 века германские исследователи открыли способ использования твердооксидных топливных элементов и карбонатного цикла, которым пользуются и в наше время. В 40-е годы 20 века, О.Давтян создал установку, работающую на основе электрохимического сжигания генераторного газа. Из 1 кубометра газа, машина вырабатывала 5 кВт часов электроэнергии. Это был первый топливный элемент на твёрдом электролите с достаточно высоким КПД.

Английский исследователь Томас Бэкон доработал конструкцию топливных элементов того времени: заменил дорогую платину, используемую в качестве катализатора, на никель, а едкую серную кислоту - на щелочной электролит, тем самым уменьшив стоимость и увеличив время работы подобных устройств. В 1959 он сконструировал батарею топливных элементов с КПД 80% и общей мощностью 6кВт, однако её размеры были слишком велики для практического применения.



С середины 60-х годов прошлого века, топливные элементы привлекли внимание создателей космических аппаратов, что позволило выйти на новый уровень развития электрохимии. Американская компания General Electric доработала устройство Бэкона и создала электрогенерирующие системы для космических программ Apollo и Gemini. Плюсами использования топливных ячеек были малые размеры и способность обеспечивать экипаж не только энергией, но и водой, однако проблемы с долговечностью, стабильностью и безопасностью так и оставались нерешёнными, а вырабатываемая сила тока была сравнительно небольшой (от 100 до 200 мА/см2 рабочей поверхности ячейки), поэтому дальнейшего развития программа не получила.

В 90-х годах интерес к подобным источникам энергии опять возобновился. Это связано с глобальными экологическими проблемами, а также с исчерпанием углеводородных ресурсов, - основного источника энергии по сегодняшний день. Ведь в топливных элементах конечным продуктом горения является вода, что делает их наиболее чистыми и безопасными для природы и человека.

Принцип работы топливных ячеек.

В наше время в топливных ячейках используется два типа электролита: кислота или щелочь. От типа зависят и химические реакции, которые проходят в самом элементе.

Топливные элементы со щелочным электролитом работают по принципу, описанному реакциями на рисунке. Водород, поступающий через анод, в присутствии катализатора реагирует с ионами гидроксила (OH-), образуя воду и электрон. На катоде кислород вступает в реакцию с электронами внешней цепи и водой, образуя ионы гидроксила и пергидроксила. Результирующая реакция, проходящая на катоде, позволяет сохранять баланс вещества и заряда в электролите.

В современных топливных элементах с кислым электролитом, водород подаётся через полый анод, поступая через мелкие поры в материале электрода, и попадает в электролит. В процессе хемосорбции происходит разложение молекул водорода на атомы, превращающиеся в ионы с положительным зарядом, отдавая по одному электрону. Кислород подаётся на катод и также поступает в электролит, вступая в реакцию с водородом при участии катализатора. При соединении кислорода с водородом и электронами внешней цепи образуется вода.

Процессы, которые происходят в топливных элементах, по своей природе являются обратными процессу электролиза. Во время реакций часть энергии превращается в тепло, а поток электронов во внешней цепи представляет собой постоянный ток, использующийся для совершения работы. Большинство реакций обеспечивают ЭДС около 1В.

Метаноловый топливный элемент.



В наше время ведутся разработки топливных элементов, в которых углеводородное топливо может использоваться в качестве источника водорода. Это так называемые метаноловые топливные элементы. В их конструкции появляется новый элемент - топливный преобразователь, что увеличивает их размер, однако решается проблема с топливом: метиловый спирт производится для химической промышленности в больших количествах, его транспортировка и хранение не составляют никаких проблем, а процесс зарядки источника сильно упрощается. Единственный минус такого источника - его меньшая эффективность. Существует возможность использования этилового спирта в качестве топлива для подобных источников. Это решило бы проблему с токсичностью метанола, однако эффективность работы этиловых топливных элементом еще меньше.

Топливные элементы современности.

За время разработок, были построены несколько типов топливных элементов, различающихся типом электролитов и видом топлива. Это элементы на щелочном электролите, фосфорно-кислотные топливные элементы, элементы на расплавленных карбонатах и твердооксидные топливные ячейки. Кроме стандартных водород-кислородных и метанольных источников тока могут существовать элементы, работающие на совершенно других видах топлива. Например, электроэнергию можно получать при окислении цинка, натрия и магния, изготавливая расходуемые электроды.

В наше время с этим видом источников энергии существует еще множество проблем, среди которых: снижение эффективности вследствие оммических потерь, диффузионных и поляризационных потерь, саморазогрев системы вследствие неэффективной работы теплоотвода, большие размеры подобных устройств.

/div>



Однако плюсов у водородных топливных ячеек гораздо больше, чем минусов. Чего стоит только абсолютная экологичность и достаточно высокий КПД. В отличие от современных паротурбинных установок, коэффициент полезного действия которых не превышает 40%, в существующих топливных элементах почти 70% энергии непосредственно превращается в электричество.

Водородные топливные элементы могут использоваться как в большой энергетике, так и в качестве замены стандартных источников энергии в автомобилях и бытовой технике.

В 1991 году в Калифорнии была введена в эксплуатацию электростанция, использующая технический водород в качестве топлива. В Японии такие станции работают еще с 1983 года. А по всей территории США располагаются теплофикационные установки с мощностью 40 кВт и КПД до 80%. Экологическая чистота станций на топливных батареях позволяет размещать их непосредственно в городах.

Топливные элементы на твёрдых оксидах обладают повышенной температурой работы и мощностью до 5 МВт. В качестве топлива могут использоваться продукты газификации твёрдого угля. Такими устройствами занимаются фирмы Vestingaus, Engelgird и International Fuel Cells, у каждой из которых имеются собственные разработки в области тепловых элементов.



В 1993 году был построен первый автобус, использующий энергию топливного элемента, с тех пор модели электробусов постоянно совершенствуются. В 1997 году были представлены прототипы легковых автомобилей с топливными источниками питания. Некоторые производители выпускают гибридные автомобили, в которых бензиновому двигателю помогает мотор на топливных элементах. Автомобиль PAC-Car II ,разработанный группой швейцарских ученых, считается самым быстрым и экономичным в мире и работает на водородном топливе. Чтобы объехать вокруг земного шара ему понадобится всего лишь 8 литров топлива.

Популярны топливные элементы и в области компьютерной и мобильной техники. Мобильная электроника нуждается в мощных, компактных и недорогих источниках питания, поэтому множество фирм ведёт свои разработки в этой области.



В 2004 году компания «Тошиба» продемонстрировала прототип метанолового топливного элемента с мощностью 100 мВт. 2 кубика метанола позволяют получать питание для 5 часов работы ноутбука и 20 часов работы плеера. Компания «Фуджитсу» представила свой топливный элемент, выдающий мощность 15 Вт и работающий 10 часов от 300 мл 30% раствора метанола. Источник фирмы Casio обеспечивает ноутбук энергией 20 часов.


Перспективы водородной энергетики.

Как только будет найден эффективный способ получения водорода, топливные элементы смогут использоваться повсеместно, и заменят уже привычные источники, работающие на углеводородном топливе. Для введения технологии в активное использование необходимы совершенно новые идеи. Очень большие надежды возлагают на нанотехнологии и концепцию биотопливных элементов. Недавно несколько компаний заявили о создании эффективных катализаторов из различных металлов, к тому же появились сведения о создании топливных элементов без мембран, что позволит значительно удешевить конструкции новейших топливных ячеек.

К сожалению, преимущества водородных топливных устройств пока не могут перевесить их главный недостаток - более высокую стоимость, по сравнению с устройствами, сжигающими углеводороды для получения энергии, - например двигателями внутреннего сгорания. Расходы на создание водородной энергоустановки составляют от 500 до нескольких тысяч долларов за 1 кВт. Остаётся только надеяться на новые изобретения, удешевляющие их изготовление и тогда человечество будет обеспечено мощным, компактным, а главное экологически чистым источником энергии.

ТМ « Volta bikes».

* Перепечатка без ссылки на сайт www.сайт запрещена и преследуется по Закону о защите авторских прав.

Топливные элементы представляют собой способ электрохимического превращения энергии водородного топлива в электричество, и единственным побочным продуктом этого процесса является вода.

Водородное топливо, используемое сейчас в топливных элементах, обычно получается из парового риформинга метана (то есть превращения углеводородов с помощью пара и тепла в метан), хотя подход может быть и более «зеленым», например электролиз воды с использованием солнечной энергии.

Основными компонентами топливного элемента являются:

  • анод, в котором происходит окисление водорода;
  • катод, где идет восстановление кислорода;
  • полимерная электролитная мембрана, через которую осуществляется транспорт протонов или гидроксид-ионов (в зависимости от среды), - она не пропускает водород и кислород;
  • поля течения кислорода и водорода, которые ответственны за доставку этих газов к электроду.

Для того чтобы питать энергией, к примеру, автомобиль, несколько топливных элементов собираются в батарею, и количество энергии, поставляемое этой батареей, зависит от общей площади электродов и количества элементов в ней. Энергия в топливном элементе генерируется следующим образом: водород окисляется на аноде, и электроны от него направляются к катоду, где восстанавливается кислород. Электроны, полученные от окисления водорода на аноде, имеют более высокий химический потенциал, чем электроны, которые восстанавливают кислород на катоде. Эта разница между химическими потенциалами электронов позволяет извлекать энергию из топливных элементов.

История создания

История топливных элементов отсылает нас к 30-м годам XIX века, когда первый водородный топливный элемент был сконструирован Уильямом Р. Гроувом. Этот элемент использовал серную кислоту в качестве электролита. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность. Он заметил, что под действием электронного тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн, химик из Университета Базеля (Швейцария), в 1839 году одновременно продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита. Эти первые попытки хотя и были по сути своей достаточно примитивными, но привлекли внимание нескольких их современников, включая Майкла Фарадея.

Исследования в области топливных элементов продолжались, и в 1930-х годах Ф.Т. Бейкон внес новый компонент в щелочной топливный элемент (один из видов топливных элементов) - ионообменную мембрану для облегчения транспорта гидроксид-ионов.

Одним из самых знаменитых исторических примеров применения щелочных топливных элементов является их использование в качестве главного источника энергии во время космических полетов в программе «Аполлон».

Выбор НАСА пал на них из-за их долговечности и технической устойчивости. В них использовалась гидроксидпроводящая мембрана, превосходящая по эффективности свою протонообменную сестру.

В течение почти двух веков с момента создания первого прототипа топливного элемента было проделано много работы по их усовершенствованию. В целом конечная энергия, получаемая от топливного элемента, находится в зависимости от кинетики окислительно-восстановительной реакции, внутреннего сопротивления элемента и переноса масс реагирующих газов и ионов на каталитически активные компоненты. За многие годы было сделано много улучшений изначальной идеи, таких как:

1) замена платиновых проводов на электроды на основе углерода с наночастицами платины; 2) изобретение мембран высокой проводимости и селективности, таких как Nafion, для облегчения ионного транспорта; 3) совмещение каталитического слоя, например наночастиц платины, распределенных по углеродной основе, с ионообменными мембранами, в результате чего получился мембранно-электродный блок с минимальным внутренним сопротивлением; 4) использование и оптимизация полей течения для доставки водорода и кислорода на каталитическую поверхность, вместо того чтобы напрямую разбавлять их в растворе.

Эти и другие улучшения в конечном итоге позволили получить технологию, достаточно эффективную, чтобы ее можно было использовать в автомобилях, таких как Toyota Mirai.

Топливные элементы с гидроксидобменными мембранами

В Университете Делавэра проводятся исследования по разработке топливных элементов с гидроксидобменными мембранами - HEMFCs (hydroxide exchange membrane fuel cells). Топливные элементы с гидроксидобменными мембранами вместо протонообменных - PEMFCs (proton exchange membrane fuel cells) - меньше сталкиваются с одной из больших проблем PEMFCs - проблемой стабильности катализатора, поскольку намного большее количество катализаторов на основе неблагородных металлов стабильно в щелочной среде, чем в кислой. Стабильность катализаторов в щелочных растворах выше благодаря тому, что растворение металлов выделяет больше энергии при низком pH, нежели при высоком. Большая часть работы в этой лаборатории также посвящена разработке новых анодных и катодных катализаторов реакций окисления водорода и восстановления кислорода для еще более эффективного их ускорения. В дополнение к этому лабораторией разрабатываются новые гидроксидобменные мембраны, так как проводимость и долговечность таких мембран еще предстоит улучшить, для того чтобы они могли составить конкуренцию протонообменным.

Поиск новых катализаторов

Причина потерь от перенапряжения в реакции восстановления кислорода объясняется отношениями линейного масштаба между промежуточными продуктами этой реакции. В традиционном четырехэлектронном механизме этой реакции кислород последовательно восстанавливается, создавая промежуточные продукты - OOH*, O* и OH*, чтобы в конечном итоге образовать воду (H2O) на каталитической поверхности. Поскольку энергии адсорбции промежуточных продуктов у отдельного катализатора сильно коррелируют друг с другом, пока еще не найдено ни одного катализатора, который хотя бы в теории не имел бы потерь от перенапряжения. Несмотря на то, что скорость этой реакции низка, замена кислотной среды на щелочную, как, например, в HEMFC, на нее не особенно влияет. Однако скорость реакции окисления водорода уменьшается почти в два раза, и этот факт мотивирует исследования, направленные на нахождение причины этого уменьшения и на обнаружение новых катализаторов.

Преимущества топливных элементов

В противовес углеводородному топливу топливные элементы более, если не совершенно, безопасны для окружающей среды и не производят парниковых газов в результате своей деятельности. Более того, их топливо (водород) в принципе является возобновляемым, поскольку его можно получить путем гидролиза воды. Таким образом, водородные топливные элементы в будущем обещают стать полноправной частью процесса производства энергии, в котором энергия солнца и ветра используется для производства водородного топлива, которое затем используется в топливном элементе для производства воды. Таким образом, цикл замыкается, и не оставляется никакого углеродного следа.

В отличие от перезаряжаемых батарей, топливные элементы имеют то преимущество, что их не надо перезаряжать - они могут сразу начать поставлять энергию, как только она понадобится. То есть если их применять, например, в области средств передвижения, то со стороны потребителя перемен почти не будет. В отличие же от солнечной энергии и энергии ветра топливные элементы могут производить энергию постоянно и куда меньше зависят от внешних условий. В свою очередь, геотермальная энергия доступна только в определенных географических областях, в то время как топливные элементы опять же не имеют такой проблемы.

Водородные топливные элементы - одни из наиболее многообещающих альтернативных источников энергии благодаря своей портативности и гибкости в плане масштаба.

Сложность хранения водорода

Помимо проблем с недостатками нынешних мембран и катализаторов, другие технические трудности для топливных элементов связаны с хранением и транспортом водородного топлива. Водород обладает очень низкой удельной энергией на единицу объема (количеством энергии, которая содержится в единице объема при данной температуре и давлении), и потому он должен храниться под очень высоким давлением, чтобы его можно было использовать в средствах передвижения. В противном случае размер контейнера для хранения необходимого количества топлива будет невозможно большим. Из-за этих ограничений хранения водорода предпринимались попытки найти способы получения водорода из чего-то кроме газообразной его формы, как, к примеру, в металлогидридных топливных элементах. Тем не менее нынешние потребительские применения топливных элементов, такие как Toyota Mirai, используют сверхкритический водород (водород, находящийся в условиях температуры выше 33 К и давления выше 13,3 атмосфер, то есть выше критических значений), и сейчас это наиболее удобный вариант.

Перспективы области

Из-за существующих технических трудностей и проблем получения водорода из воды при помощи солнечной энергии в ближайшем будущем исследования, скорее всего, будут нацелены в основном на поиск альтернативных источников водорода. Одна популярная идея состоит в том, чтобы использовать аммиак (нитрид водорода) напрямую в топливном элементе вместо водорода или чтобы получать водород из аммиака. Причина этого - меньшая требовательность аммиака по части давления, что делает его более удобным для хранения и перемещения. Помимо того, аммиак привлекателен как источник водорода потому, что в нем нет углерода. Благодаря этому решается проблема отравления катализатора из-за некоторого количества СО в водороде, произведенном из метана.

В будущем топливные элементы могут найти широкое применение в области технологий средств передвижения и распределенного производства энергии, например, в жилых районах. Несмотря на то, что в данный момент использование топливных элементов в качестве главного источника энергии требует больших денежных средств, в случае обнаружения более дешевых и эффективных катализаторов, стабильных мембран с высокой проводимостью и альтернативных источников водорода водородные топливные элементы могут приобрести высокую экономическую привлекательность.

Водородный топливный элемент компании Nissan

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания достижений индустрии становится недостаточно, поэтому вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Что такое топливные элементы?

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает нижеописанным образом.


Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

Видео: Топливный водородный элементсвоими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом, несколькими кусками оргстекла, щелочью и водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».


Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков) можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем правом углу, т.е. способность отдавать электроны, усиливается сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки). В

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Видео: Топливный элемент или вечная батарейка дома

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания


Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью - еще не решены. Как говорилось уже, в отличие от традиционных источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Видео: Автомобиль на водородном топливном элементе

Большие надежды возлагаются на применение нанотехнологий и наноматериалов , которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы


Топливный элемент - это электрохимическое устройство преобразования энергии, которое за счет химической реакции преобразовывает водород и кислород в электричество. В результате этого процесса образуется вода и выделяется большое количество тепла. Топливный элемент очень похож на аккумулятор, который можно зарядить и затем использовать накопленную электрическую энергию.
Изобретателем топливного элемента считают Вильяма Р. Грува, который изобрел его еще в 1839 г. В этом топливном элементе в качестве электролита использовался раствор серной кислоты, а в качестве топлива - водород, который соединялся с кислородом в среде окислителя. Следует отметить, что до недавнего времени топливные элементы использовались только в лабораториях и на космических аппаратах.
В перспективе топливные элементы смогут составить конкуренцию многим другим системам для преобразования энергии (включая газовую турбину на электростанциях) ДВС в автомобиле и электрическим батарейкам в портативных устройствах. Двигатели внутреннего сгорания сжигают топливо и используют давление, созданное расширением выделяющихся при сгорании газов, для выполнения механической работы. Аккумуляторные батареи хранят электрическую энергию, преобразовывая ее затем в химическую энергию, которая при необходимости может быть преобразована обратно в электрическую энергию. Потенциально топливные элементы очень эффективны. Еще в 1824 г. французский ученый Карно доказал, что циклы сжатия-расширения двигателя внутреннего сгорания не могут обеспечить КПД преобразования тепловой энергии (являющейся химической энергией сгорающего топлива) в механическую выше 50%. Топливный элемент не имеет движущихся частей (по крайней мере, внутри самого элемента), и поэтому они не подчиняются закону Карно. Естественно, они будут иметь больший, чем 50%, КПД и особенно эффективны при малых нагрузках. Таким образом, автомобили с топливными элементами готовы стать (и уже доказали это) более экономичными, чем обычные автомобили в реальных условиях движения.
Топливный элемент обеспечивает выработку электрического тока постоянного напряжения, который может использоваться для привода в действие электродвигателя, приборов системы освещения и других электросистем в автомобиле. Имеются несколько типов топливных элементов, различающихся используемыми химическими процессами. Топливные элементы обычно классифицируются по типу используемого в них электролита, который они используют. Некоторые типы топливных элементов являются перспективными для применения их в качестве силовых установок электростанций, а другие могут быть полезны для маленьких портативных устройств или для привода автомобилей.
Щелочной топливный элемент - это один из самых первых разработанных элементов. Они использовались в космической программе США, начиная с 1960-х гг. Такие топливные элементы очень восприимчивы к загрязнению и поэтому они требуют очень чистого водорода и кислорода. Кроме того, они очень дороги, и поэтому этот тип топливного элемента, скорее всего, не найдет широкого применения на автомобилях.
Топливные элементы на основе фосфорной кислоты могут найти применение в стационарных установках невысокой мощности. Они работают при довольно высокой температуре и поэтому требуют длительного времени для своего прогрева, что также делает их неэффективными для использования в автомобилях.
Твердоокисные топливные элементы лучше подходят для крупных стационарных генераторов электроэнергии, которые могли бы обеспечивать электричеством заводы или населенные пункты. Этот тип топливного элемента работает при очень высоких температурах (около 1000 °C). Высокая рабочая температура создает определенные проблемы, но, с другой стороны, имеется преимущество - пар, произведенный топливным элементом, может быть направлен в турбины, чтобы выработать большее количество электричества. В целом это улучшает суммарную эффективность системы.
Одна из наиболее многообещающих систем - протонно-обменный мембранный топливный элемент - ПОМТЭ (PEMFC - Protone Exchange Membrane Fuel Cell). В настоящий момент этот тип топливного элемента является наиболее перспективным, поскольку он может приводить в движение автомобили, автобусы и другие транспортные средства.

Химические процессы в топливном элементе

В топливных элементах применяется электрохимический процесс соединения водорода с кислородом, получаемым из воздуха. Как и в аккумуляторных батареях, в топливных элементах используются электроды (твердые электрические проводники) находящиеся в электролите (электрически проводимая среда). Когда в контакт с отрицательным электродом (анодом) входят молекулы водорода, последние разделяются на протоны и электроны. Протоны проходят через протонно-обменную мембрану (ПОМ) на положительный электрод (катод) топливного элемента, производя электричество. Происходит химическое соединение молекул водорода и кислорода с образованием воды, как побочного продукта этой реакции. Единственный вид выбросов от топливного элемента - водяной пар.
Электричество, произведенное топливными элементами, может использоваться в электрической трансмиссии автомобиля (состоит из преобразователя электроэнергии и асинхронного двигателя переменного тока) для получения механической энергии для привода в движение автомобиля. Работа преобразователя электроэнергии заключается в преобразовании постоянного электрического тока, произведенного топливными элементами, в переменный ток, на котором работает тяговый электродвигатель транспортного средства.


Схема устройства топливного элемента с протонно-обменной мембраной :
1 - анод;
2 - протонно-обменная мембрана (РЕМ);
3 - катализатор (красный);
4 - катод

Протонно-обменная мембрана топливного элемента (PEMFC) использует одну из самых простых реакций любого топливного элемента.


Отдельная ячейка топливного элемента

Рассмотрим, как устроен топливный элемент. Анод, отрицательный полюс топливной ячейки, проводит электроны, которые освобождены от водородных молекул, чтобы они могли использоваться во внешнем электрическом контуре (цепи). Для этого в нем гравируются каналы, распределяющие водород равномерно по всей поверхности катализатора. Катод (положительный полюс топливной ячейки) имеет гравированные каналы, которые распределяют кислород по поверхности катализатора. Он также проводит электроны назад от внешнего контура (цепи) до катализатора, где они могут соединиться с водородными ионами и кислородом с образованием воды. Электролит - протоннообменная мембрана. Это особый материал, похожий на обычный пластик, но обладающий способностью пропускать положительно заряженные ионы и блокировать проход электронов.
Катализатор - специальный материал, который облегчает реакцию между кислородом и водородом. Катализатор обычно изготавливается из платинового порошка, нанесенного очень тонким слоем на углеродистую бумагу или ткань. Катализатор должен быть шероховатым и пористым, для того чтобы его поверхность могла максимально соприкасаться с водородом и кислородом. Покрытая платиной сторона катализатора находится перед протонно-обменной мембраной (ПОМ).
Газообразный водород (Н 2) подается в топливный элемент под давлением со стороны анода. Когда молекула H2 входит в контакт с платиной на катализаторе, она разделяется на две части, два иона (H+) и два электрона (e–). Электроны проводятся через анод, где они проходят через внешний контур (цепь), выполняя полезную работу (например, приводя в действие электродвигатель) и возвращаются со стороны катода топливного элемента.
Тем временем со стороны катода топливного элемента газообразный кислород (O 2) продавливается через катализатор, где он формирует два атома кислорода. Каждый из этих атомов имеет сильный отрицательный заряд, который обеспечивает притяжение двух ионов H+ через мембрану, где они объединяются с атомом кислорода и двумя электронами из внешнего контура (цепи) с образованием молекулы воды (H 2 O).
Эта реакция в отдельном топливном элементе производит мощность приблизительно 0,7 Вт. Чтобы поднять мощность до требуемого уровня, необходимо объединить много отдельных топливных элементов, чтобы сформировать батарею топливных элементов.
Топливные элементы на основе ПОМ работают при относительно низкой температуре (около 80 °С), а это означает, что они могут быть быстро нагреты до рабочей температуры и не требуют дорогих систем охлаждения. Постоянное совершенствование технологий и материалов, используемых в этих элементах, позволили приблизить их мощность к уровню, когда батарея таких топливных элементов, занимающая небольшую часть багажника автомобиля, может обеспечить энергию, необходимую для привода автомобиля.
На протяжении последних лет большинство из ведущих мировых производителей автомобилей инвестируют большие средства в разработку конструкций автомобилей, использующих топливные элементы. Многие уже продемонстрировали автомобили на топливных элементах с удовлетворительными мощностными и динамическими характеристиками, хотя они имели довольно высокую стоимость.
Совершенствование конструкций таких автомобилей происходит очень интенсивно.


Автомобиль на топливных элементах, использует силовую установку, расположенную под полом автомобиля

Автомобиль NECAR V изготовлен на базе автомобиля Mercedes-Benz А-класса, причем вся силовая установка вместе с топливными элементами расположена под полом автомобиля. Такое конструктивное решение дает возможность разместить в салоне автомобиля четырех пассажиров и багаж. Здесь в качестве топлива для автомобиля используется не водород, а метанол. Метанол с помощью реформера (устройства, перерабатывающего метанол в водород), преобразуется в водород, необходимый для питания топливного элемента. Использование реформера на борту автомобиля дает возможность использовать в качестве топлива практически любые углеводороды, что позволяет заправлять автомобиль на топливных элементах, используя имеющуюся сеть заправок. Теоретически топливные элементы не производят ничего, кроме электричества и воды. Преобразование топлива (бензина или метанола) в водород, необходимый для топливного элемента, несколько снижает экологическую привлекательность такого автомобиля.
Компания Honda, которая занимается топливными элементами с 1989 г., изготовила в 2003 г. небольшую партию автомобилей Honda FCX-V4 с протонно-обменными топливными элементами мембранного типа фирмы Ballard. Эти топливные элементы вырабатывают 78 кВт электрической мощности, а для привода ведущих колес используются тяговые электродвигатели мощностью 60 кВт и с крутящим моментом 272 Н м. Автомобиль на топливных элементах, по сравнению с автомобилем традиционной схемы, имеет массу примерно на 40 % меньшую, что обеспечивает ему отличную динамику, а запас сжатого водорода дает возможность пробега до 355 км.


Автомобиль Honda FСX использует для движения электрическую энергию, получаемую с помощью топливных элементов
Автомобиль Honda FCX - первый в мире автомобиль на топливных элементах, который прошел государственную сертификацию в США. Автомобиль сертифицирован по нормам ZEV - Zero Emission Vehicle (автомобиль с нулевым загрязнением). Компания Honda не собирается пока продавать эти автомобили, а передает порядка 30 автомобилей в лизинг в шт. Калифорния и г. Токио, где уже существует инфраструктура водородных заправок.


Концептуальный автомобиль Hy Wire компании General Motors имеет силовую установку на топливных элементах

Большие исследования по разработке и созданию автомобилей на топливных элементах проводит компания General Motors.


Шасси автомобиля Hy Wire

При создании концептуального автомобиля GM Hy Wire было получено 26 патентов. Основу автомобиля составляет функциональная платформа толщиной 150 мм. Внутри платформы располагаются баллоны для водорода, силовая установка на топливных элементах и системы управления автомобиля, использующие новейшие технологии электронного управления по проводам. Шасси автомобиля Hy Wire представляет собой платформу небольшой толщины, в которой заключены все основные элементы конструкции автомобиля: баллоны для водорода, топливные элементы, аккумуляторы, электродвигатели и системы управления. Такой подход к конструкции дает возможность в процессе эксплуатации менять кузовы автомобиля Компания также проводит испытания опытных автомобилей Opel на топливных элементах и проектирует завод по производству топливных элементов.


Конструкция «безопасного» топливного бака для сжиженного водорода :
1 - заправочное устройство;
2 - наружный бак;
3 - опоры;
4 - датчик уровня;
5 - внутренний бак;
6 - заправочная линия;
7 - изоляция и вакуум;
8 - нагреватель;
9 - крепежная коробка

Проблеме использования водорода в качестве топлива для автомобилей уделяет много внимания компания BMW. Совместно с фирмой Magna Steyer, известной своими работами по использованию сжиженного водорода в космических исследованиях, BMW разработала топливный бак для сжиженного водорода, который может использоваться на автомобилях.


Испытания подтвердили безопасность использования топливного бака с жидким водородом

Компания провела серию испытаний на безопасность конструкции по стандартным методикам и подтвердила ее надежность.
В 2002 г. на автосалоне во Франкфурте-на-Майне (Германия) был показан автомобиль Mini Cooper Hydrogen, который использует в качестве топлива сжиженный водород. Топливный бак этого автомобиля занимает такое же место, как и обычный бензобак. Водород в этом автомобиле используется не для топливных элементов, а в качестве топлива для ДВС.


Первый в мире серийный автомобиль с топливным элементом вместо аккумуляторной батареи

В 2003 г. фирма BMW объявила о выпуске первого серийного автомобиля с топливным элементом BMW 750 hL. Батарея топливных элементов используется вместо традиционного аккумулятора. Этот автомобиль имеет 12-цилиндровый двигатель внутреннего сгорания, работающий на водороде, а топливный элемент служит альтернативой обычному аккумулятору, обеспечивая возможность работы кондиционера и других потребителей электроэнергии при длительных стоянках автомобиля с неработающим двигателем.


Заправка водородом производится роботом, водитель не участвует в этом процессе

Эта же фирма BMW разработала также роботизированные заправочные колонки, которые обеспечивают быструю и безопасную заправку автомобилей сжиженным водородом.
Появление в последние годы большого количества разработок, направленных на создание автомобилей, использующих альтернативные виды топлива и альтернативные силовые установки, свидетельствует о том, что двигатели внутреннего сгорания, которые доминировали на автомобилях в течение прошедшего столетия, в конце концов уступят дорогу более чистым экологически, эффективным и бесшумным конструкциям. Их широкое распространение на данный момент сдерживается не техническими, а, скорее, экономическими и социальными проблемами. Для их широкого применения необходимо создать определенную инфраструктуру по развитию производства альтернативных видов топлива, созданию и распространению новых заправочных станций и по преодолению ряда психологических барьеров. Использование водорода в качестве автомобильного топлива потребует решения вопросов хранения, доставки и распределения, с принятием серьезных мер безопасности.
Теоретически водород доступен в неограниченном количестве, но его производство является весьма энергоемким. Кроме того, для перевода автомобилей на работу на водородном топливе необходимо произвести два больших изменения системы питания: сначала перевести ее работу с бензина на метанол, а затем, в течение некоторого времени и на водород. Пройдет еще некоторое время, перед тем как этот вопрос будет решен.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

© 2024 softlot.ru
Строительный портал SoftLot