Антропогенное загрязнение воздуха закрытых помещений. Гигиеническая характеристика источников загрязнения

> Углекислота

Ученые обнаружили, что избыток углекислого газа в помещении очень вреден для здоровья. Углекислота сегодня чуть ли не главное действующее лицо многих катастрофических сценариев, которыми нас пугают многие ученые. Ему приписывают вину за глобальное потепление и все связанные с этим грядущие катаклизмы.

Но, как выяснилось, данный газ уже давно делает свое "черное дело". И вовсе не в масштабе планеты, а в любой душной комнате. Не хватает кислорода, говорим мы в таком случае. Особенно если начинает болеть голова, краснеют глаза, резко снижается внимание, появляется чувство усталости. Однако, как показали последние исследования зарубежных ученых, причина вовсе не в недостатке кислорода. Виноват избыток углекислого газа, который каждый из нас выдыхает. Кстати, от 18 до 25 литров этого газа в час.

Чем же опасна углекислота? Индийские ученые пришли к совершенно неожиданным выводам. Даже в относительно низких концентрациях этот газ является токсичным и по своей "ядовитости" близок к двуокиси азота, что может привести к заболеванию сердечно-сосудистой системы, гипертонии, усталости и т.д.

Чистый воздух за городом содержит около 0,04 процента углекислого газа. Еще недавно в Европе и США считалось, что газ опасен для человека только в больших концентрациях. Однако в последнее время начали изучать, как он влияет на человека при концентрации выше чем 0,1 процента. Оказалось, если содержание превышает этот уровень, то, например, у многих учеников снижается внимание, ухудшается успеваемость, они пропускают уроки из-за болезней легких, бронхов, носоглотки и т.д. Особенно это касается детей, больных астмой. Поэтому требования к воздуху во многих странах очень высоки. В России подобные исследования источников загрязнения воздуха никогда не проводились. Однако комплексное обследование московских детей и подростков показало, среди обнаруженных болезней преобладают заболевания органов дыхания.

Очень важно поддерживать высокие показатели качества воздуха в спальне, где люди проводят треть своей жизни. Чтобы хорошо выспаться, гораздо важнее качественный воздух в спальне, чем продолжительность сна, а уровень углекислоты в спальнях и детских комнатах должен быть ниже 0,08 процента.

Финские ученые нашли способ решения проблемы. Ими создан прибор, который удаляет из воздуха помещений избыток углекислого газа. В итоге содержание газа не больше, чем за городом. Принцип основан на абсорбции (поглощении) углекислого газа специальным веществом. В России о существовании проблемы негативного влиянии повышенного уровня углекислоты в помещении знают пока единицы.

Ирина Меднис

19.03.2008 | Российская газета

Другие интересные статьи раздела:


Состав атмосферного воздуха: азот – 78.08%, кислород - 20.95%, диоксид углерода – 0.03-0.04, примеси газов (аргон, неон, гелий, радон, криптон, озон, водород, ксенон, закись азота, метан) в минимальных концентрациях. Последние являются показателями происходящих процессов у живых организмов.

Азот по количественному содержанию является наиболее существенной составной частью атмосферного воздуха. Он принадлежит к индифферентным газам и играет роль разбавителя кислорода. При избыточном давлении (4 атм) азот может оказывать наркотическое действие.

В природе идет непрерывный круговорот азота, в результате чего азот атмосферы под влиянием электрических разрядов превращается в окислы азота, которые, вымываясь из атмосферы осадками, обогащают почву солями азотистой и азотной кислот. Под влиянием бактерий почвы соли азотистой кислоты превращаются в соли азотной кислоты, которые, в свою очередь, усваиваются растениями и служат для синтеза белка. При разложении органических веществ азот восстанавливается и снова поступает в атмосферу, из которой вновь связывается биологическими объектами.

Азот воздуха усваивается сине-зелеными водорослями и некоторыми видами бактерий почвы (клубеньковыми и азотфиксирующими).

Кислород . Постоянное содержание кислорода поддерживается непрерывными процессами его обмена в природе. Кислород потребляется при дыхании человека и животных, он необходим для горения и окисления. Кислород поступает в атмосферу в результате фотосинтеза растений. Наземные растения и фитопланктон ежегодно поставляют в атмосферу около 1,5?1015 т кислорода, что примерно соответствует его потреблению. В последние годы установлено, что под действием солнечных лучей молекулы воды распадаются с образованием молекул кислорода. Это второй источник образования кислорода в природе.

Организм человека очень чувствителен к недостатку кислорода. Уменьшение его содержания в воздухе до 17 % приводит к учащению пульса, дыхания. При концентрации кислорода 11-13 % отмечается выраженная кислородная недостаточность, приводящая к резкому снижению работоспособности. Содержание в воздухе 7-8 % кислорода несовместимо с жизнью.

Углекислый газ в природе находится в свободном и связанном состоянии. Диоксид углерода в 1,5 раза тяжелее воздуха. В окружающей среде происходят непрерывные процессы выделения и поглощения диоксида углерода. В атмосферу он выделяется в результате дыхания человека и животных, а также горения, гниения, брожения.



Диоксид углерода является физиологическим возбудителем дыхательного центра. Его парциальное давление в крови обеспечивается регулированием кислотно-щелочного равновесия. В организме он находится в связанном состоянии в виде двууглекислых солей натрия в плазме и эритроцитах крови. При вдыхании больших концентраций диоксида углерода нарушаются окислительно-восстановительные процессы. Чем больше диоксида углерода во вдыхаемом воздухе, тем меньше его может выделить организм. Накопление диоксида углерода в крови и тканях ведет к развитию тканевой аноксии. Увеличение содержания диоксида углерода во вдыхаемом воздухе до 3 % приводит к нарушениям функции дыхания (одышка), появлению головной боли и снижению работоспособности, при 4 % отмечают усиление головной боли, шум в ушах, сердцебиение, возбужденное состояние, при 8 % и более возникает тяжелое отравление и наступает смерть. По содержанию диоксида углерода судят о чистоте воздуха в жилых и общественных зданиях, значительное накопление этого соединения в воздухе закрытых помещений указывает на санитарное неблагополучие помещения (скученность людей, плохая вентиляция).

Считают, что ощущение дискомфорта обычно связано не только с увеличением содержания диоксида углерода свыше 0,1 %, но и с изменением физических свойств воздуха при скоплении людей в помещениях: повышаются влажность и температура, изменяется ионный состав воздуха главным образом за счет увеличения положительных ионов и др.

Из всех показателей, связанных с ухудшением свойств воздуха, диоксид углерода наиболее доступен простому определению. Поэтому концентрация (0,1 %) издавна принята в гигиенической практике как предельно допустимая величина, интегрально отражающая химический состав и физические свойства воздуха в жилых и общественных помещениях. Таким образом, диоксид углерода является косвенным гигиеническим показателем, по которому оценивают степень чистоты воздуха. По содержанию диоксида углерода производится расчет вентиляции в жилых и общественных зданиях.



ИЗА - комплексный индекс загрязнения атмосферы, учитывающий несколько примесей, представляющий собой сумму концентраций выбранных загрязняющих веществ в долях ПДК (в соответствии с РД 52.04.186-89 Руководство по контролю загрязнения атмосферы).

В зависимости от значения ИЗА уровень загрязнения воздуха определяется следующим образом:

Уровень загрязнения атмосферного воздуха Значения ИЗА

Низкий меньше или равен 5

Повышенный 5-7

Высокий 7-14

Очень высокий больше или равен 14

7. Показатели загрязнения воздуха помещений. Углекислота как показатель загрязнения воздуха в больничных помещениях. Нормирование и методы определения.

Воздух застаивается в помещении, где постоянно возрастает концентрация вредных для здоровья веществ из-за использования различных строительных и отделочных материалов, конструкционных и обивочных материалов мебели, полимеров, бытовой химии, пластмасс, а также множества различных электронных устройств. Но не стоит забывать, что из этого следуют заболевания разной степени тяжести, такие как астма, аллергия, постоянные головные боли, стресс, быстрая утомляемость, нарушения мозговой деятельности, может развиться также и онкологическая патология.

основным косвенным показателем загрязненности воздух жилых помещений служит углекислый газ (точнее его концентрация в воздухе).

При нахождении в помещении людей концентрация углекислого газа по степенно увеличивается, так как выдыхаемый воздух содержит повышенное его количество.

Концентрация углекислого газа выражается в процентах (%) и промилях (Л°). 1 промиля (1 Л») - это количество мл газа в 1 л воздуха.

Как известно, концентрация углекислого газа в атмосферном воздухе составляет приблизительно 0.04 %

ПДК (предельно допустимая концентрация) углекислого газа в воздухе жилых помещений равна:

0.7 % - для "чистых" помещений (больничных) - операционных, палат, перевязочных и тд.

0.1 % -для обычных жилых помещений.

Нормирование содержания углекислого газа в воздухе связано с тем, что при увеличении его концентрации он оказывает неблагоприятное действие на человека. Так, при возрастании концентрации углекислого газа во вдыхаемом воздухе до 2 % и более он оказывает токсическое действие, при концентрации - 3-4 % - сильное токсическое действие, а концентрация 7-8 % является летальной.

При пребывании в помещении людей количество углекислого газа увеличивается. Один человек выделяет приблизительно 22.6 л углекислого газа в час.

Каждый литр подаваемого в помещение воздуха содержит 0.4 %° углекислого газа, то есть каждый литр этого воздуха содержит 0.4 мл углекислого газа и таким образом может еще "принять" 0.3 мл (0.7 - 0.4) для чистых помещений (до 0.7 мл в литре или 0.7 /~) и 0.6 мл (1 - 0.4) для обычных помещений (до 1 мл в литре или 1 /~).

Так как каждый час 1 человек выделяет 22.6 л (22600 мл) углекислого газа, а каждый литр подаваемого воздуха может "принять" указанное выше число мл углекислого газа, то количество литров воздуха, которое необходимо подать в помещение на 1 человека в час составляет (палаты, операционные) - 22600 / 0.3 = 75000 л = 75 м3 . То есть, 75 м3 воздуха на каждого человека в час должно поступить в помещение для того чтобы концентрация углекислого газа в нем не превысила 0.7%

Нормативная основа предупреждения внутрибольничных инфекций

А. Е. Федотов,
д-р техн. наук, президент АСИНКОМ

Пребывание человека в больнице опасно для здоровья.

Причина - внутрибольничные инфекции, в том числе вызываемые микроорганизмами, приспособившими ся к традиционным мерам гигиены и устойчивые к антибиотикам*.

Красноречивые данные об этом приведены в статье Fabrice Dorchies в настоящем номере журнала (стр. 28) . Что делается у нас, не знает никто. Картина в наших больницах наверняка много хуже. Судя по уровню действующих отраслевых нормативных документов, наше здравоохранение еще не подошло к пониманию проблемы.

А проблема ясна. Она ставилась в журнале «Технология чистоты» №1/9 еще 10 лет назад. В 1998 г. АСИНКОМ были разработаны «Нормы на чистоту воздуха в больницах», основанные на зарубежном опыте. В том же году они были направлены в ЦНИИ эпидемиологии. В 2002 г. этот документ был представлен в Госсанэпиднадзор. Реакции не последовало в обоих случаях.

Зато в 2003 г. был утвержден СанПиН 2.1.3.137503 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров» - отсталый документ, требования которого порой противоречат законам физики (см. ниже).

Основное возражение против введения западных стандартов - «нет денег». Это не правда. Деньги есть. Но идут они не туда, куда надо. Десятилетний опыт аттестации по мещений больниц силами Центра сертификации чистых помещений и Лаборатории испытаний чистых помещений показал, что фактическая стоимость операционных и палат интенсивной терапии превышает порой в несколько раз затраты на объекты, выполненные по Европейским нормам и оснащенные западным оборудованием. При этом объекты не соответствуют современному уровню.

Одна из причин - отсутствие должной нормативной базы.

Существующие стандарты и нормы

Техника чистых помещений в больницах запада применяется давно. Еще в 1961 г. в Великобритании профессор сэр Джон Чарнлей (John Charnley) оборудовал первую операционную «greenhouse» со скоростью нисходящего с потолка потока воздуха 0,3 м/с. Это явилось радикальным средством снижения риска инфицирования больных при трансплантации тазобедренных суставов. До этого у 9 % больных происходило инфицирование во время операции, и требовалась повторная трансплантация. Это была истинная трагедия для больных.

В 70-80-е годы технология чистоты на основе систем вентиляции и кондиционирования воздуха и применения высокоэффективных фильтров стала неотъемлемым элементом в больницах Европы и Америки. Тогда же в Германии, Франции и Швейцарии появились первые стандарты на чистоту воздуха в больницах.

В настоящее время выходит второе поколение стандартов, основанных на современном уровне знаний.

Швейцария

В 1987 г. Швейцарским институтом здравоохранения и лечебных учреждений (SKI - Schweizerisches Institut fur Gesundheits- und Krankenhauswesen) было принято «Руководство по строительству, эксплуатации и обслуживанию систем подготовки воздуха в больницах» - SKI, Band 35, «Richtlinien fur Bau, Betrieb und Uberwachung von raumlufttechnischen Anlagen in Spitalern».

Руководство различает три группы помещений:

В 2003 г. Швейцарским обществом инженеров по отоплению и кондиционированию было принято руководство SWKI 9963 «Системы отопления, вентиляции и кондиционирования воздуха в больницах (проектирование, строительство и эксплуатация)».

Его существенным отличием является отказ от нормирования чистоты воздуха по микробным загрязнениям (КОЕ) для оценки работы системы вентиляции и кондиционирования.

Критерием оценки является концентрация частиц в воздухе (не микроорганизмов). Руководство устанавливает четкие требования к подготовке воздуха для операционных и дает оригинальную методику оценки эффективности мер по обеспечению чистоты с помощью генератора аэрозолей.

Подробный анализ руководства дан в статье А. Бруннера в настоящем номере журнала.

Германия

В 1989 г. в Германии был принят стандарт DIN 1946, часть 4 «Техника чистых помещений. Системы обеспечения чистоты воздуха в больницах» - DIN 1946, Teil 4. Raumlufttechik. Raumlufttechishe Anlagen in Krankenhausern, Dezember, 1989 (пересмотрен в 1999 г.).

В настоящее время подготовлен проект стандарта DIN, содержащий показатели чистоты как по микроорганизмам (метод седиментации), так и по частицам.

Стандарт детально регламентирует требования к гигиене и методам обеспечения чистоты.

Установлены классы помещений Iа (высокоасептические операционные), Ib (другие операционные) и II. Для классов Iа и Ib даны требования к максимально допустимому загрязнению воздуха микроорганизмами (метод седиментации):

Установлены требования к фильтрам для различных ступеней очистки воздуха: F5 (F7) + F9 + H13.

Обществом немецких инженеров VDI подготовлен проект стандарта VDI 2167, часть: Оборудование зданий больниц - отопление, вентиляция и кондиционирование воздуха. Проект идентичен Швейцарскому руководству SWKI 9963 и содержит лишь редакционные правки, вы званные некоторыми различиями между «швейцарским» немецким и «немецким» немецким языками.

Франция

Стандарт на чистоту воздуха AFNOR NFX 906351, 1987 в больницах был принят во Франции в 1987 г. и пересмотрен в 2003 г.

Стандарт установил предельно допустимые концентрации частиц и микроорганизмов в воздухе. Концентрация частиц определяется по двум размерам: ≥0,5 мкм и ≥5,0 мкм.

Важным фактором является проверка чистоты только в оснащенном состоянии чистых помещений. Более подробно требования французского стандарта приведены в статье Fabrice Dorchies «Франция: стандарт на чистоту воздуха в больницах» этого номера журнала.

Перечисленные стандарты детализируют требования к операционным, устанавливают число ступеней фильтрации, типы фильтров, размеры ламинарных зон и т. д.

Проектирование чистых помещений больниц ведется на основе стандартов серии ИСО 14644 (ранее велось на основе Fed. Std. 209D).

Россия

В 2003 г. принят СанПиН 2.1.3.1375603 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров».

Ряд требований этого документа вызывает недоумение. Например, приложение 7 устанавливает санитарно-микробиологические показатели для помещений разных классов чистоты (*оснащенное состояние):

В России классы чистоты чистых помещений были установлены ГОСТ Р 50766695, затем ГОСТ Р ИСО 14644616 2001. В 2002 г. последний стандарт стал стандартом СНГ ГОСТ ИСО 146446162002 «Чистые помещения и связанные с ними контролируемые среды, Часть 1. Классификация чистоты воздуха». Логично ожидать, что отраслевые документы должны соответствовать национальному стандарту, не говоря уже о том, что определения «условно чистые», «условно грязные» для классов чистоты, «грязный потолок» для потолков выглядят странно.

СанПиН 2.1.3.1375603 устанавливает для «особо чистых» помещений (операционные, асептические боксы для гематологических, ожоговых пациентов) показатель общего числа микроорганизмов в воздухе (КОЕ/м 3) до начала работы (оснащенное состояние) «не более 200».

А стандарт Франции NFX 906351 - не более 5. Эти больные должны находиться под однонаправленным (ламинарным) потоком воздуха. При наличии 200 КОЕ/м 3 , больной в состоянии иммунодефицита (асептический бокс гематологического отделения) неизбежно погибнет.

По данным ООО «Криоцентр» (А. Н. Громыко) микробная загрязненность воздуха в роддомах Москвы колеблется от 104 до 105 КОЕ/м 3 , причем последняя цифра относится к роддому, куда привозят бомжей.

Воздух московского метро содержит примерно 700 КОЕ/м 3 . Это лучше, чем в «условно чистых» помещениях больниц по СанПиНу.

В п. 6.20 вышеуказанного СанПиНа сказано: «В стерильные помещения воздух подается ламинарными или слабо турбулентными струями (скорость воздуха менее 0,15 м/с)» .

Это противоречит законам физики: при скорости менее 0,2 м/с поток воздуха не может быть ламинарным (однонаправленным), а при менее 0,15 м/с он становится не «слабо», а сильно турбулентным (неоднонаправленным).

Цифры СанПиНа - не безобидные, именно по ним ведется контроль объектов и экспертиза проектов органами санитарно-эпидемиологического надзора. Можно выпускать сколь угодно передовые стандарты, но пока существует СанПиН 2.1.3.1375603 дело с места не сдвинется.

Речь идет не просто об ошибках. Речь идет об общественной опасности таких документов.

В чем причина их появления?

  • Незнание европейских норм и основ физики?
  • Знание, но:
    • намеренное ухудшение условий в наших больницах?
    • лоббирование чьих-то интересов (например, производителей малоэффективных средств очистки воздуха)?

Как это увязать с защитой здоровья населения и правами потребителей?

Для нас, потребителей услуг здравоохранения, такая картина абсолютно неприемлема.

Тяжелыми и ранее неизлечимыми болезнями являлись лейкемия и другие заболевания крови.


Постель больного находится в зоне однонаправленного потока воздуха (класс 5 ИСО)

Сейчас решение есть, причем решение единственное: трансплантация костного мозга, затем подавление иммунитета организма на период адаптации (1-2 месяца). Чтобы человек, находясь в состоянии иммунодефицита, не погиб, его помещают в условия стерильного воздуха (под ламинарный поток).

В мире эта практика известна десятки лет. Пришла она и в Россию. В 2005 г. в Нижегородской областной детской клинической больнице были оборудованы две палаты интенсивной терапии для трансплантации костного мозга.

Палаты выполнены на уровне современной мировой практики. Это - единственное средство спасения обреченных детей.

А вот в ФГУЗ «Центр гигиены и эпидемиологии Нижегородской области» устроили безграмотную и амбициозную писчебумажную волокиту, задержав ввод объекта на полгода. Понимают ли эти служащие, что на их совести могут быть неспасенные детские жизни? Ответ нужно дать матерям, глядя им в глаза.

Разработка национального стандарта России

Анализ опыта зарубежных коллег позволил выделить несколько ключевых вопросов, некоторые из которых вызвали бурную дискуссию при обсуждении стандарта.

Группы помещений

Зарубежные стандарты в основном рассматривают операционные. Некоторые стандарты рассматривают изоляторы и другие помещения. Комплексная систематизация помещений всех назначений с ориентацией на классифика цию чистоты по ИСО отсутствует.

В принятом стандарте введены пять групп помещений в зависимости от риска инфицирования больного. Отдельно (группа 5) выделены изоляторы и гнойные операционные.

Классификация помещений выполнена с учетом факторов риска.

Критерий оценки чистоты воздуха

Что взять за основу оценки чистоты воздуха?:

  • частицы?
  • микроорганизмы?
  • то и другое?

Развитие норм в западных странах по этому критерию имеет свою логику.

На первых этапах чистота воздуха в больницах оценивалась только по концентрации микроорганизмов. Затем стал применяться и счет частиц. Еще в 1987 г. стандарт Франции NFX 906351 ввел контроль чистоты воздуха как по частицам, так и по микроорганизмам (см. выше) . Счет частиц с помощью лазерного счетчика частиц позволяет оперативно в режиме реального времени определять концентрацию частиц, в то время как для инкубации микроорганизмов на питательней среде требуется несколько дней.

Следующий вопрос: а что, собственно, проверяется при аттестации чистых помещений и систем вентиляции?

Проверяется качество их работы и правильность проект ных решений. Эти факторы однозначно оцениваются концентрацией частиц, от которой зависит число микроорганизмов.

Конечно, микробная обсемененность зависит от чистоты стен, оборудования, персонала и пр. Но эти факторы относятся к текущей работе, к эксплуатации, а не к оценке инженерных систем.

В связи с этим в Швейцарии (SWKI 9963) и Германии (VDI 2167) сделан логичный шаг вперед: установлен контроль воздуха только по частицам.

Учет микроорганизмов остается функцией эпидемиологической службы больницы и направлен на текущий контроль чистоты.

Эта мысль была заложена и в проект российского стандарта. На данном этапе от нее пришлось отказаться, ввиду категорически отрицательной позиции представителей санэпиднадзора.

Предельно допустимые нормы по частицам и микроорганизмам для различных групп помещений взяты по аналогам с западными стандартами и на основе собственного опыта.

Классификация по частицам соответствует ГОСТ ИСО 1464461.

Состояние чистого помещения

ГОСТ ИСО 1464461 различает три состояния чистых помещений.

В построенном состоянии проверяется выполнение ряда технических требований. Концентрация загрязнений как правило не нормируется.

В оснащенном состоянии помещение полностью укомплектовано оборудованием, но отсутствует персонал и не проводится технологический процесс (для больниц - отсутствует медперсонал и больной).

В эксплуатируемом состоянии в помещении выполняются все процессы, предусмотренные назначением помещения.

Правила производства лекарственных средств - GMP (ГОСТ Р 5224962004) предусматривают контроль загрязнений частицами как в оснащенном состоянии, так и в эксплуатируемом состоянии, а микрорганизмами - только в эксплуатируемом состоянии. В этом есть логика. Выделения загрязнений от оборудования и персонала при производстве лекарственных средств можно нормировать и обеспечивать соответствие нормам техническими и организационными мерами.

В лечебном учреждении есть ненормируемый элемент - больной. Его и медперсонал невозможно одеть в комбинезон для класса 5 ИСО и полностью закрыть всю поверхность тела. Из6за того, что источниками загрязнений в эксплуатируемом состоянии больничного помещения управлять нельзя, устанавливать нормы и проводить аттестацию помещений в эксплуатируемом состоянии бессмысленно, по крайней мере, по частицам.

Это понимали разработчики всех зарубежных стандартов. Нами также включен в ГОСТ контроль помещений только в оснащенном состоянии.

Размеры частиц

Изначально в чистых помещениях контролировалось загрязнение частицами с размерами, равными и большими 0,5 мкм (≥0,5 мкм). Затем, исходя из конкретных областей применения, стали появляться требования к концентрации частиц ≥0,1 мкм и ≥0,3 мкм (микроэлектроника), ≥0,5 мкм (производство лекарственных средств в дополнение к частицам ≥0,5 мкм) и пр.

Анализ показал, что в больницах нет смысла следовать шаблону «0,5 и 5,0 мкм», а достаточно ограничиваться контролем частиц ≥0,5 мкм.

Скорость однонаправленного потока


Рис. 1. Распределение модуля скорости

Выше уже отмечалось, что СанПиН 2.1.3.3175603, установив предельно допустимые значения скорости однонаправленного (ламинарного) потока 0,15 м/с, нарушил законы физики.

С другой стороны, вводить в медицине норму GMP 0,45 м/с ±20 % нельзя. Это приведет к дискомфорту, поверхостному обезвоживанию раны, может травмировать ее и пр. Поэтому для зон с однонаправленным потоком (операционные, палаты интенсивной терапии) установлена скорость от 0,24 до 0,3 м/с. Это грань допустимого, уходить от которой нельзя.

На рис. 1 показано распределение модуля скорости потока воздуха в зоне операционного стола для реальной операционной одной из больниц, полученное методом компьютерного моделирования.

Видно, что при малой скорости исходящего потока он быстро турбулируется и не выполняет полезной функции.

Размеры зоны с однонаправленным потоком воздуха

Из рис. 1 видно, что ламинарная зона с «глухой» плоскостью внутри бесполезна. А на рис. 2 и 3 показан принцип организации однонаправленного потока операционной Центрального института травматологии и ортопедии (ЦИТО). В этой операционной автор шесть лет назад оперировался по поводу полученной травмы. Известно, что однонаправленный поток воздуха сужается под углом примерно 15 % и то, что было в ЦИТО, смысла не имеет.

Правильная схема показана на рис. 4 (фирма «Klimed»).

Не случайно западные стандарты предусматривают размеры потолочного диффузора, создающего однонаправленный поток 3x3 м, без «глухих» поверхностей внутри. Исключения допускаются для менее ответственных операций.

Решения по вентиляции и кондиционированию

Эти решения соответствуют западным стандартам, экономичны и эффективны.

Сделаны некоторые изменения и упрощения без потери смысла. Например, в качестве финишных фильтров в операционных и палатах интенсивной терапии применены фильтры Н14 (вместо Н13), имеющие ту же стоимость, но значительно более эффективные.

Автономные устройства очистки воздуха

Автономные воздухоочистители являются эффективным средством обеспечения чистоты воздуха (кроме помещений групп 1 и 2). Они не требуют больших затрат, позволяют принимать гибкие решения и могут использоваться в массовом порядке, особенно в действующих больницах.

На рынке представлен широкий выбор воздухоочистителей. Не все они эффективны, некоторые из них вредны (выделяют озон). Основная опасность - неудачный вы6ор воздухоочистителя.

Лаборатория испытаний чистых помещений проводит экспериментальную оценку воздухоочистителей по показателям назначения. Опора на достоверные результаты - важное условие выполнения требований ГОСТ.

Методы испытаний

В руководстве SWKI 9963 и проекте стандарта VDI 2167 дана методика испытаний операционных с использованием манекенов и генераторов аэрозолей (). Применение этой методики в России вряд ли оправданно.

В условиях небольшой по территории страны одна специализированная лаборатория может обслужить все больницы. Для России это нереально.

С нашей точки зрения, и не нужно. С помощью манекенов отрабатываются типовые решения, которые закладываются в стандарт, а затем служат основой проектирования. Эти типовые решения отрабатываются в условиях института, что и сделано в г. Люцерн (Швейцария).

В массовой практике типовые решения применяются непосредственно. На готовом объекте проводятся испытания на соответствие стандартам и проекту.

ГОСТ Р 5253962006 дает систематизированную программу испытаний чистых помещений больниц по всем необходимым параметрам.

Болезнь легионеров - спутник старых инженерных систем

В 1976 г. в одном из отелей Филадельфии проходил конгресс Американского легиона. Из 4000 участников - 200 заболели, а 30 человек погибли. Причиной явился вид микроорганизмов, названный Legionella pneumophila в связи с упомянутым событием и насчитывающий более 40 разновидностей. Сама болезнь была названа болезнью легионеров.

Симптомы заболевания проявляются через 2-10 дней после инфицирования в виде головной боли, болей в конечностях и горле, сопровождаемых лихорадкой. Течение болезни сходно с обычной пневмонией, в связи с чем ее часто ошибочно диагностируют как пневмонию.

По официальной оценке в Германии с населением около 80 млн человек ежегодно страдают от болезни легионеров около 10 тыс. человек, но большинство случаев остаются нераскрытыми.

Инфекция передается воздушно6капельным путем. Возбудитель попадает в воздух помещения из старых систем вентиляции и кондиционирования, систем обеспечения горячей водой, душевых и пр. Legionella размножается особенно быстро в стоячей воде при температуре от 20 до 45 °С. При 50 °С происходит пастеризация, а при 70 °С - дезинфекция.

Опасными источниками являются старые большие здания (в т. ч. больницы и роддома), имеющие системы вентиляции и горячее водоснабжение.

Средства борьбы с болезнью - применение современных систем вентиляции с достаточно эффективными фильтрами и современных систем подготовки воды, включая циркуляцию воды, ультрафиолетовое облучение потока воды и пр.**

* Особую опасность представляют аспергиллы - широко распространенные плесневые грибы, обычно безвредные для людей. Но они представляют опасность для здоровья иммунодефицитных больных (например медикаментозная иммуносупрессия после трансплантации органов и тканей или больные с агранулоцитозом). Для таких больных ингаляция даже малых доз спор аспергилл может быть причиной тяжелых инфекционных заболеваний. На первом месте здесь находится легочная инфекция (пневмония). В больницах часто наблюдаются случаи инфицирования, связанные с проведением строительных работ или реконструкцией. Эти случаи вызваны выделением спор аспергилл из строительных материалов во время проведения строительных работ, что требует принятия специальных защитных мер (SWKI 99.3).

** Использованы материалы статьи M. Hartmann «Keep Legionella bugs at bay», Cleanroom Technology, March, 2006.

помещений:

2. углекислый газ

3. угарный газ

4. сернистый газ

5. Предельно допустимое содержание углекислого газа в воздухе

помещений составляет:

6. Воды, наиболее часто подвергающиеся бактериальному загрязнению:

1. грунтовые

2. поверхностные

3. межпластовые напорные

4. межпластовые не напорные

7. Зона санитарной охраны водоисточника:

1. территория, на которой запрещено строительство предприятий

2. территория около водоисточника

3. территория, на которой установлен специальный режим, направленный на охрану водоисточника от загрязнений

4. территория населенного пункта

8. Централизованное водоснабжение:

1. подвоз воды автотранспортом

2. подача воды по водопроводу

3. забор воды из колодца

4. забор воды непосредственно из родника

9. Общая жесткость воды обусловлена содержанием:

2. йода, фтора

3. кальция, магния

4. сульфатов, хлоридов

10. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

11. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

12. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

13. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

14. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

15. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

16. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

17. Дезинфекция воды – это:

3. коагуляция воды

4. фильтрация воды

18. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

4. организации субботников один раз в год

Часть 2

Инструкция: Дополните ответ.

Питание, являющееся элементом комплексного лечения больных, называется _____________________.

Питание, компенсирующее неблагоприятное действие факторов внешней и производственной среды, называется _____________________.

24. Укажите основной источник белка в пище _____________________.

25. Укажите основной источник углеводов в пище _____________________.

26. Рахит может развиваться при недостатке в организме витамина _____________________.

27. Кровоточивость десен и низкая заживляемость ран связаны с дефицитом витамина_____________________.

Часть 3.

Инструкция: Решите задачу.

28. У пациента отмечаются признаки недостаточности витамина А. Перечислите эти признаки.

29. В производственных условиях рассматривался вопрос по внедрению мероприятий, наиболее эффективных с точки зрения снижения действия неблагоприятных факторов производственной среды на природу и человека. Укажите эти мероприятия.

30. В отношении медицинских работников технологические и технические мероприятия по снижения неблагоприятного действия на организм оказываются малоэффективными. Укажите, какие мероприятия применяются в отношении медицинских работников.

Вариант № 2

Часть 1

Инструкция: Выберите один правильный ответ.

1. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

2. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

3. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

4. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

5. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

6. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

7. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

8. Дезинфекция воды – это:

1. уничтожение патогенных микроорганизмов и вирусов

2. освобождение воды от мути и взвеси

3. коагуляция воды

4. фильтрация воды

9. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

1. складированием мусора на определенной территории домовладения

2. сбором отбросов в ямах, вырытых на территориях домовладения

3. санитарной очисткой населенных мест

4. организации субботников один раз в год

10. Наука, изучающая влияние факторов окружающей среды на организм

человека, называется:

1. биология

2. гигиена

3. санитария

4. экология

11. Воздействие человеческой деятельности на природу:

1. абиотическое

2. биотическое

Основные источники загрязнения воздушной среды помещений условно можно разделить на четыре группы:

1. Вещества, поступающие в помещение с загрязненным воздухом. Основным источником загрязнения воздуха в помещениях является бытовая пыль. Она представляет собой мельчайшие частицы различных веществ, способных парить в воздухе. Пыль еще и адсорбирует многие химические соединения. Степень проникновения атмосферных загрязнений внутрь здания для разных химических веществ различна. При сравнении концентрации двуокиси азота, окиси азота, окиси углерода и пыли в жилых зданиях и в атмосферном воздухе обнаружено, что эти вещества находятся на уровне или ниже концентраций их в наружном воздухе. Концентрации двуокиси серы, озона и свинца обычно внутри ниже, чем снаружи. Концентрации ацетальдегида, ацетона, бензола, толуола, ксилола, фенола, ряда предельных углеводородов в воздушной среде помещений превышали концентра­ции в атмосферном воздухе более чем в 10 раз.

2. Продукты деструкции полимерных материалов.

3. Антропотоксины.

4. Продукты сгорания бытового газа и бытовой деятельности.

Одним из наиболее распространенных источников загрязнения воздушной среды закрытых помещений является курение. Сигаретный дым в доме - прямая угроза здоровью. Он содержит тяжелые металлы, окись углерода, окись азота, сернистый ангидрид, сти­рол, ксилол, бензол, этилбензол, никотин, формальде­гид, фенол, около 16 канцерогенных веществ.

Другой возможный источник загрязнения воздуха в квартире - это отстойники в водопроводно-канализационной сети. Мусоропровод также таит в себе опасность для здоровья, особенно если приемные люки установлены на кухне или в прихожей.

Показатели санитарного состояния воздуха помещений:

· Окисляемость(количество О2 необходимое для окисления органических соединений воздуха)

Критерии оценки санитарного состояния воздуха закрытых помещений .



1. ОБЩАЯ МИКРОБНАЯ ЗАГРЯЗНЕННОСТЬ.в 1м3 воздуха.

2. КОЛИЧЕСТВО САНИТАРНО-ПОКАЗАТЕЛЬНЫХ МИКРОБОВ ВОЗДУХА.В 250 ЛИТРАХ ВОЗДУХА.

Cанитарно-показательными микробами воздуха закрытых помещений являются:

1) золотистый стафилококк

2) a-зеленящий стрептококк

3) b-гемолитический стрептококк

Эти бактерии являются показателями орально-капельного загрязнения. Они имеют общий путь выделения в окружающую среду с патогенными микроорганизмами, передающимися воздушно-капельным путём. Сроки выживания их в окружающей среде не отличаются от сроков, характерных для большинства возбудителей воздушно-капельных инфекций.

Методы делятся на седиментационные и аспирационные.

Углекислый газ является косвенным показателем загрязнения, т.к.:

Антропотоксины в воздухе помещений. Санитарно-гигиеническое значение содержания углекислого газа.

В процессе своей жизнедеятельности человек выделяет около 400 химических соединений. Воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, распределение которых по классам опасности представляется следующим образом:

второй класс опасности - высоко опасные вещества (диметиламин, сероводород, двуокись азота, окись этилена, бензол и др.);

третий класс опасности - малоопасные вещества (уксусная кислота, фенол, метилстирол, толуол, метанол, винилацетат и др.).

Даже двухчасовое пребывание в этих условиях отрицательно сказывается на умственной работоспособности. При большом скоплении людей в помещении (классы, аудитории) воздух становится тяжелым.

Значение СО2: косвенный показатель загрязнения воздушной среды закрытых помещений, где основной источник – человек.

Углекислый газ является косвенным показателем загрязнения, т.к.:

1. СО2 наилучшим образом характеризует человека как источника загрязнений воздуха закрытых помещений.

2. Существует корреляционная зависимость между накоплением СО2 и денатурацией воздушной среды (изменение физического, химического и микробного составов)

3. Существуют экспресс-методы определения СО2(доступные, надежные, дешевые).

Полимерные материалы и бытовой газ как источники загрязнения воздуха жилых и общественных зданий. Особенности действия загрязнителей воздушной среды на организм. Меры профилактики.

В настоящее время только в строительстве используется около 100 наименований полимерных материалов. Практически все полимерные материалы выделяют в воздушную среду те или иные токсические химические вещества, оказывающие вредное влияние на здоровье человека.

Стеклопластики на основе различных смесей, применяемые в строительстве, звуко - и теплоизоляции выделяют в воздушную среду значительные количества ацетона, метакриловой кислоты, толуола, бутанола, формальдегида, фенола и стирола. Лакокрасочные покрытия и клейсодержащие вещества также являются источниками загрязнения воздушной среды закрытых помещений.

Многие виды красивых синтетических отделочных материалов - пленок, клеенок, ламенатов и пр. - выделяют набор вредных веществ, например, метанол, дибутилфталат и др. Ковровые изделия из химических волокон выделяют в значительных концентрациях стирол, изофенол, сернистый ангидрид. Средства бытовой химии - моющие, чистящие средства, ядохимикаты для борьбы с насекомыми, грызунами, пестициды, разного рода клеи, средства автокосметики, полирующие вещества, лаки, краски и многие другие - способны вызвать различные заболевания у людей, особенно, если запасы таких веществ хранятся в плохо проветриваемом помещении.

Атмосферные загрязнения могут быть причиной возникновения неинфекционных заболеваний у человека, кроме того, они способны ухудшать санитарные условия жизни людей и причинять экономический ущерб.

Биологическое действие атмосферных загрязнений

Атмосферные загрязнения могут оказывать острое и хроническое воздействие.

Мероприятия по санитарной охране атмосферного воздуха

1. Законодательные

Существует большое количество нормативных документов, регламентирующих охрану атмосферного воздуха. В Федеральном законе «Об охране окружающей среды» говорится, что каждый гражданин имеет право на благоприятную окружающую среду, на ее защиту от негативного воздействия, вызванного хозяйственной и иной деятельностью. Закон «Об охране атмосферного воздуха» регламентирует разработку и проведение мероприятий по ликвидации и предупреждению загрязнения воздуха – строительство газоочистных и пылеулавливающих устройств на промышленных предприятиях и предприятиях теплоэнергетики.

2. Технологические

Технологические мероприятия являются основными мероприятиями по охране атмосферного воздуха, так как только они позволяют снизить или полностью исключить выброс вредных веществ в атмосферу на месте их образования. Данные мероприятия непосредственно направлены на источник выбросов.

3. Санитарно-технические.. Целью санитарно-технических мероприятий является извлечение или нейтрализация компонентов выбросов, находящихся в газообразной, жидкой или твердой форме, от организованных стационарных источников. Для этого используются различные газопылеулавливающие установки.

4. Архитектурно-планировочные

К данной группе мероприятий относятся:

Функциональное зонирование территории города, то есть выделение функциональных зон – промышленной, зоны внешнего транспорта, пригородной, коммунальной

Рациональная планировка территории

Запрещение строительства предприятий, загрязняющих воздух, в жилой зоне населенного пункта и размещение их в промышленной зоне с учетом господствующего направления ветра на данной территории;

Создание санитарно-защитных зон. СЗЗ – это территория вокруг промышленного предприятия или другого объекта, являющегося источником загрязнения окружающей среды, размеры которой обеспечивают снижение уровней воздействия производственных вредностей в жилой зоне до предельно допустимых значений.

Рациональная застройка улиц, устройство транспортных развязок на основных автомагистралях с сооружением тоннелей;

Озеленение территории города. Зеленые насаждения играют роль своеобразных фильтров, влияют на рассеивание промышленных выбросов в атмосфере, изменяя ветровой режим и циркуляцию воздушных масс.

Выбор для строительства предприятия земельного участка с учетом рельефа местности, аэроклиматических условий и других факторов.

5. Административные

Рациональное распределение транспортных потоков по их интенсивности, составу, времени и направлению движения;

Ограничение движения в пределах жилой зоны города большегрузного автотранспорта;

Наблюдение за состоянием дорожных покрытий и своевременностью их ремонта и уборки;

Система контроля технического состояния транспортных средств.

52. Особенности состава и свойства атм. Воздуха, производственных, жилых и обществ-х зданий. Атмосферный воздух имеет химические, физические и механические свойства , которые оказывают на организм человека как благоприятное, так и неблагоприятное воздействие.

· Химические свойства обусловлены нормальным газовым составом воздуха и вредными газообразными примесями;

· К физическим свойствам воздуха относятся:

Атмосферное давление,

Температура,

Влажность,

Подвижность,

Электрическое состояние,

Солнечная радиация,

Электромагнитные волны

от физических свойств воздуха зависят климат и погода ;

· Механические свойства воздуха зависят от содержания в нём примесей твёрдых частий в виде

И присутствия микроорганизмов.

Воздушная среда неоднородна по физическим параметрам и вредным примесям , что связано с условиями ее формирования и за­грязнения .

Следует различать:

1. Чистый атмосферный воздух;

2. Атмосферный воздух промышленых регионов;

3. воздух помещений жилых и общественных зданий;

4. воздух помещений промышлен­ных предприятий.

Эти виды воздуха отличаются друг от друга по составу и свойствам, а значит и по влиянию на организм человека

I.атмосферный воздух

Физические свойства атмосферного воздуха:

Температура,

Влаж­ность,

Подвижность,

Атмосферное давление,

Электрическое состояние

· Физические свойства атмосферного воздуха нестабильны и связаны с климатическими особенно­стями географического региона .· Наличие в воздухе газообразных твердых примесей (пыль и сажа ) зависит от характера выбросов в атмосферу, условий разбавления и процессов самоочищения.

На концентрацию вредных веществ в атмосфере влияют:

1. скорость и направление господствующих ветров,

2. температура, влажность воз­духа,

3. осадки, солнечная радиация,

4. количество, качество и высота вы­бросов в атмосферу.

Свойства воздуха жилых и общественных зданий более стабильны- в этих зданиях поддерживается оптимальный микроклимат за счет вентиляции и отопления. Газообразные примеси связаны с выделением в воздух продуктов жизнедеятельности людей, выделением токсических веществ из материалов и предметов обихода, выполненных из полимерных материалов, продуктов горения бытового газа и др. На свойства воздуха промышленных помещений существенное влияние оказывают особенности технологического процесса. В некоторых случаях физические свойства воздуха приобретают самостоятельное значение вредного профессионального фактора, а загрязнение воздуха токсичными веществами может привести к профессиональным болезням.

53. Солнечная радиация -испускаемый солнцем интегральный поток излучения. В гигиеническом отношении особый интерес представляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие - гамма-лучи. И онизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интенсивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучи будет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Солнечная радиация является мощным оздоровительным и профилактическим фактором.

54 .Колличественная и качественная характеристика солнечной радиации. Вследствие поглощения, отражения и рассеяния лучистой энергии в мировом пространстве на поверхности Земли солнечный спектр ограничен,особенно в ее коротковолновой части. Если на границе земной атмосферы УФ часть-5%, видимая-52%, инфракрасная- 43%, то у поверхности Земли состав солнечной радиации иной: УФ часть-1%, видимая-40%, инфракрасная-59%. Это объясняется различной степенью чистоты атмосферного воздуха, большим разнообразием погодных условий, наличием облаков и тд. На большой высоте толща атмосферы,проходимая солнечными лучами, уменьшается, снижается степень их поглощения атмосферой, интенсивность солнечной радиации увеличивается. В зависимости от высоты стояния Солнца над горизонтом изменяется соотношение прямой солнечной радиации и рассеянной, что имеет существенное значение в оценке эффекта ее биологического действия.

55.Гигиеническая характеристика ультрафиолетовой части солнечной радиации . Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загар возникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержены рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

56. Физиолого-гигиеническое значение ультрафиолетового излучения. Мероприятия по профилактике УФ нед-ти. См 55.

Профилактика УФ-недостаточности

1. Архитектурно-планировочные мероприятия.

При проектировании и строительстве жилых зданий, детских, лечебно-профилактических и других учреждений необходимо учитывать инсоляционный режим.

2. Гелиотерапия (солнечные ванны). Может организовываться на пляжах, в соляриях. Солнечные ванны могут быть суммарными (общими и местными), ослабленными, тренирующими. Суммарные ванны используют для здоровых, закаленных детей. Общие солнечные ванны могут быть ослабленными за счет применения решетчатых тентов, марли.

3. Использование искусственных источников.

57. Биологическое действие ультрафиолетовых лучей (УФЛ) весьма и весьма разнообразно. Оно может носить как положительный, так и деструктивный характер. Наиболее опасны эффекты воздействия коротковолнового УФЛ (10-200 нм), подавляющая часть которых задерживается в верхних слоях атмосферы, в частности, в озоновом ее слое. Однако опасность поражения УФЛ имеет место при длительном пребывании человека на Солнце, а также в производственных условиях при работе с искусственными источниками УФЛ (электросварка), проведении физиопроцедур (лечебное, профилактическое ультрафиолетовое облучение). Повышение дозы УФЛ приводят к денатурации белка, чем, в первую очередь, обусловлено развитие катаракты, что требует при работе с УФЛ защиты зрительного анализатора. Деструктивный эффект УФЛ используется в практической деятельности человека. В частности, губительное действие их на микробные клетки (бактерицидный эффект при длине волн 180–280 нм, максимальный – при 254 нм) широко применяется для санации воздуха, поддержание антимикробного режима в помещениях лечебно-профилактических учреждений, обеззараживания воды. Способность различных сред люминесцировать под воздействием УФЛ используется в аналитической химии. Например, люминесцентный метод используется для определения витаминов в продовольственном сырье и продуктах питания.

Положительные аспекты действия УФЛ заключаются в следующем:

· УФЛ стимулируют выработку антител, фагоцитоз, накопление агглютининов в крови, повышая естественный иммунитет, резистентность организма к воздействию неблагоприятных факторов окружающей среды

· УФЛ обусловливают пигментообразование (длины волн в районе 340 нм) и эритемообразование

· УФЛ играют значительную роль в обеспечении организма витамином D3

В климатологии по уровню УФЛ выделяют «зону дефицита» (широта выше 57,5°), «зону комфорта» (42,5–57,5°), «зону избытка» (менее 42,5°), что необходимо учитывать при гигиеническом воспитании населения, проведении профилактических мероприятий.

С дефицитом УФЛ в первую очередь связано развитие синдрома светового голодания, который может наблюдаться у людей, живущих в «зоне дефицита», в городах с загрязненной атмосферой, работающих под землей, мало бывающих на открытом воздухе.

Для защиты от ультрафиолетового излучения применяются коллективные и индивидуальные способы и средства:экранирование источников излучения и рабочих мест; удаление обслуживающего персонала от источников ультрафиолетового излучения (защита расстоянием – дистанционное управление); рациональное размещение рабочих мест; специальная окраска помещений; СИЗ и предохранительные средства (пасты, мази).Для экранирования рабочих мест применяют ширмы, щитки или специальные кабины. Стены и ширмы окрашивают в светлые тона (серый, желтый, голубой), применяют цинковые и титановые белила для поглощения ультрафиолетового излучения.К средствам индивидуальной защиты от ультрафиолетовых излучений относятся: термозащитная спецодежда; рукавицы; спецобувь; защитные каски; защитные очки и щитки со светофильтрами в зависимости от выполняемой работы.Для защиты кожи от ультрафиолетового излучения применяются мази с содержанием веществ, служащих светофильтрами для этих излучений (салол, салицилово-метиловый эфир и др.).

© 2024 softlot.ru
Строительный портал SoftLot