Охранная сигнализация своими руками. Схема охранной сигнализации с кодовым замком на AVR микроконтроллерах Электрическая схема охранной сигнализации

Пожарная сигнализация является сложной системой, которая помогает обнаружить источник возникновения огня. Кроме того, в ней предусматривается система речевого оповещения, дымоудаления и другие важные функции. Общие моменты работы такого оборудования представляют многие, однако не все из них понимают, каким образом происходит оповещение о нарушениях. Из-за этого могут возникнуть сомнения по поводу того, а стоит ли вообще устанавливать эту систему, так как может показаться, что оно не очень надежно. Для этого мы более подробно рассмотрим принцип, по которому работает пожарная сигнализация.

Принцип работы оповещения

Вначале напомним, из чего состоит пожарная сигнализация:

  • сенсорные устройства, то есть извещатели и датчики;
  • оборудование, отвечающее за сбор и обработку информации с сенсорных устройств, датчиков;
  • оборудование централизованного управления, например, центральный компьютер.

Периферийные устройства (обладают самостоятельным конструктивным исполнением и подключаются к контрольной панели):

  • принтер сообщений: печать служебных и тревожных сообщений системы;
  • пульт управления;
  • световой оповещатель;
  • звуковой оповещатель;
  • модуль, изолирующий короткое замыкание: используется для того, чтобы обеспечить работоспособность кольцевых шлейфов в том случае, если произошло короткое замыкание.

В общем принципе работы нет ничего сложного: через специальные датчики информация поддается программе обработки, а затем выводится в мониторинговый центр, отвечающий за безопасность. Здесь отдельное внимание стоит уделить самим датчикам, которые делятся на два вида.

  1. Активные датчики. В них генерируется постоянный сигнал, принадлежащий охраняемой зоне. Если он изменяется, они начинают реагировать.
  2. Пассивные датчики. Их действие основано на прямом изменении окружающей обстановки, что вызывается возгоранием.

Кроме того, датчики могут отличаться по механизму действия:

  • работа за счет инфракрасного механизма;
  • за счет магнитокрасного механизма;
  • за счет комбинированного механизма;
  • реагирование на разбитие стекла;
  • применение периметральных активных переключателей.

Алгоритм действий

После того, как датчики обнаружили источник возгорания, пожарная сигнализация начинает выполнять алгоритм действий. Если принципиальная схема сделана верно, то весь алгоритм сработает правильно.

  1. Для того чтобы люди узнали о начале пожара, должна включиться система оповещения. Она может быть светозвуковой или обычной, то есть звуковой. Состав и тип оповещения определяется на этапе проектирования. Это зависит от площади здания, его высоты и так далее. Система оповещения обязательно включает в себя световые таблички с надписью «выход», которые помогают найти выход в задымленном пространстве.

  2. Освобождение всех путей эвакуации людей. Это возможно при наличии системы контроля и управления доступом (СКУД). Пожарная сигнализация подает в нее сигнал и она, то есть СКУД, дает возможность находящимся в здании людям покинуть опасное место без препятствий.

  3. Включение системы автоматического пожаротушения. Здесь возможны три варианта: водяное пожаротушение, водопенное, порошковое или газовое пожаротушение . Тип определяется по НБП, а также имуществом, которое находится на объекте. Для примера можно взять библиотеку. Представим, что тушение пожара в ней будет осуществляться пеной или водой. В таком случае убытки от этого будут такими же, как от самого пожара.

  4. Включение системы дымоудаления. Это важно для того, чтобы люди не отравились вредными веществами, содержащимися в дыме от пожара. Также из системы приточной вентиляции должна прекратиться подача воздуха с улицы, так как он способствует раздуванию пламени. Все эти команды также подает автоматическая пожарная сигнализация.

  5. Если в здании есть лифты, он должны опуститься до уровня первого этажа и заблокироваться, но перед этим должны открыться двери.

  6. Отключение потребителей тока. Системы жизнеобеспечения переходят в аварийный режим. Сама система безопасности снабжается от ББП, то есть блоков бесперебойного питания.

Схема подключения сигнализации

Чтобы все эти моменты были выполнены качественно, важно правильно составить принципиальную схему подключения сигнализации . С помощью нее эксплуатация системы будет эффективной и безопасной.

Напомним, что принципиальная схема отличается двумя важными моментами:

  • показывает, как воспроизвести схему;
  • дает информацию о составе схемы и принципах функционирования, что также полезно при доработке или ремонте оборудования.

Обычно схеме подключения дается вместе с комплектом сигнализации. Нужно следить за соблюдением всех аспектов установки оборудования. Правильная схема и точное следование ей поможет быстро отреагировать на очаг возгорания и предпринять все необходимые действия, которые направлены на спасение людей.

Как видно, принцип, по которому осуществляется работа пожарной сигнализации, достаточно прост. Главное, чтобы все заложенные в ней действия были выполнены вовремя, так как речь идет о жизни. Это также является главной причиной, по которой нужно своевременно и внимательно устанавливать пожарную сигнализацию, которая служит на благо всем людям.

Датчики дыма являются более эффективным инструментом противопожарной сигнализации, так как, в отличие от традиционных тепловых датчиков, они срабатывают до образования открытого пламени и заметного роста температуры в помещении. Ввиду сравнительной простоты реализации, широкое распространение получили оптоэлектронные датчики дыма. Они состоят из дымовой камеры, в которой установлены излучатель света и фотоприемник. Связанная с ними схема формирует сигнал срабатывания, когда обнаруживается существенное поглощение излучаемого света. Именно такой принцип действия положен в основу рассматриваемого датчика.

Приведенный здесь датчик дыма использует батарейное питание, поэтому, в целях увеличения практичности, он должен в среднем потреблять очень малый ток, исчисляемый единицами микроампер. Это позволит ему в течение нескольких лет проработать без необходимости замены батареи питания. Кроме того, в исполнительной цепи предполагается использование звукового излучателя, способного развить звуковое давление не менее 85 дБ. Типичным способом обеспечения очень малого электропотребления устройства, которое должно содержать достаточно сильноточные элементы, как, например, излучатель света и фотоприемник, является его повторно-кратковременный режим работы, причем длительность паузы должна во много раз превышать длительность активной работы.

В таком случае среднее потребление будет сводиться к суммарному статическому потреблению неактивных компонентов схемы. Реализовать такую идею помогают программируемые микроконтроллеры (МК) с возможностями перевода в микромощный дежурный режим и автоматического возобновления активной работы через заданные интервалы времени. Таким требованиям полностью отвечает 14-выводной МК MSP430F2012 с объемом встроенной Flash-памяти 2 кбайт. Данный МК после перевода в дежурный режим LPM3 потребляет ток, равный всего лишь 0.6 мкА. В эту величину также входит потребляемый ток встроенного RC-генератора (VLO) и таймера А, что позволяет продолжать счет времени даже после перевода МК в дежурный режим работы. Однако данный генератор очень нестабилен. Его частота в зависимости от окружающей температуры может варьироваться в пределах 4…22 кГц (номинальная частота 12 кГц). Таким образом, в целях обеспечения заданной длительности пауз в работе датчика, в него должна быть заложена возможность калибровки VLO. Для этих целей можно использовать встроенный высокочастотный генератор - DCO, который откалиброван производителем с точностью не хуже ±2.5% в пределах температурного диапазона 0...85°С.

Со схемой датчика можно ознакомиться на рис. 1.

Рис. 1.

Здесь в качестве элементов оптической пары, размещенных в дымовой камере (SMOKE_CHAMBER), используются светодиод (СД) и фотодиод инфракрасного (ИК) спектра. Благодаря рабочему напряжению МК 1.8…3.6 В и надлежащим расчетам других каскадов схемы, достигнута возможность питания схемы от двух батареек типа ААА. Для обеспечения стабильности излучаемого света в условиях питания нестабилизированным напряжением рабочий режим СД задается источником тока 100 мА, который собран на двух транзисторах Q3, Q4. Данный источник тока активен, когда на выходе P1.6 установлен высокий уровень. В дежурном режиме работы схемы он отключается (P1.6 = «0»), а общее потребление каскадом ИК излучателя снижается до ничтожно малого уровня тока утечки через Q3. Для усиления сигнала фотодиода применена схема усилителя фототока на основе ОУ TLV2780. При выборе этого ОУ руководствовались стоимостью и временем установления. У данного ОУ время установления составляет до 3 мкс, что позволило не использовать поддерживаемую им возможность перехода в дежурный режим работы, а взамен этого - управлять питанием усилительного каскада с выхода МК (порт P1.5). Таким образом, после отключения усилительного каскада он вообще не потребляет никакого тока, а достигнутая экономия тока составляет около 1.4 мкА.

Для сигнализации о срабатывании датчика дыма предусмотрены звуковой излучатель (ЗИ) P1 (EFBRL37C20 , ) и светодиод D1. ЗИ относится к пьезоэлектрическому типу. Он дополнен компонентами типовой схемы включения (R8, R10, R12, D3, Q2), которые обеспечивают непрерывную генерацию звука при подаче постоянного напряжения питания. Примененный здесь тип ЗИ генерирует звук частотой 3.9±0,5 кГц. Для питания схемы ЗИ выбрано напряжение 18 В, при котором он создает звуковое давление порядка 95 дБ (на расстоянии 10 см) и потребляет ток около 16 мА. Данное напряжение генерирует повышающий преобразователь напряжения, собранный на основе микросхемы IC1 (TPS61040 , TI). Требуемое выходное напряжение задано указанными на схеме номиналами резисторов R11 и R13. Схема преобразователя также дополнена каскадом изоляции всей нагрузки от батарейного питания (R9, Q1) после перевода TPS61040 в дежурный режим (низкий уровень на входе EN). Это позволяет исключить протекание токов утечки в нагрузку и, таким образом, свести общее потребление данным каскадом (при отключенном ЗИ) до уровня собственного статического потребления микросхемы IC1 (0.1 мкА). В схеме также предусмотрены: кнопка SW1 для ручного включения / отключения ЗИ; «джамперы» для конфигурации цепи питания схемы датчика (JP1, JP2) и подготовки к работе ЗИ (JP3), а также разъемы внешнего питания на этапе отладки (X4) и подключения адаптера встроенной в МК отладочной системы (X1) через двухпроводной интерфейс Spy-Bi-Wire.

Рис. 2.

После сброса МК выполняется вся необходимая инициализация, в т.ч. калибровка генератора VLO и настройка периодичности возобновления активной работы МК, равной восьми секундам. Вслед за этим МК переводится в экономичный режим работы LPM3. В этом режиме остается в работе VLO и таймер А, а ЦПУ, высокочастотная синхронизация и прочие модули ввода-вывода прекращают работу. Выход из этого состояния возможен по двум условиям: генерация прерывания по входу P1.1, которое возникает при нажатии на кнопку SW1, а также генерация прерывания таймера А, которое происходит по истечении установленных восьми секунд. В процедуре обработки прерывания по входу P1.1 вначале генерируется пассивная задержка (примерно 50 мс) для подавления дребезга, а затем изменяется на противоположное состояние линии управления ЗИ, давая возможность вручную управлять активностью ЗИ. Когда же возникает прерывание по таймеру А (прерывание ТА0), выполняется процедура оцифровки выхода усилителя фототока в следующей последовательности. Вначале выполняются четыре оцифровки при отключенном ИК светодиоде, затем - четыре оцифровки при включенном светодиоде. В дальнейшем эти оцифровки подвергаются усреднению. В конечном счете формируются две переменные: L - усредненное значение при отключенном ИК светодиоде, и D - усредненное значение при включенном ИК светодиоде. Четырехкратные оцифровки и их усреднения выполняются с целью исключения возможности ложных срабатываний датчика. С этой же целью выстраивается дальнейшая цепочка «препятствий» ложному срабатыванию датчика, начиная с блока сопоставления переменных L и D. Здесь сформулировано необходимое условие срабатывания: L - D > x, где x - порог срабатывания. Величину x выбирают опытным путем из соображений нечувствительности (например, к пыли) и гарантированного срабатывания при попадании дыма. Если условие не выполняется, происходит отключение светодиода и ЗИ, сбрасывается флаг состояния датчика (AF) и счетчик SC. После этого, выполняется настройка таймера А на возобновление активной работы через восемь секунд, и МК переводится в режим LPM3. Если условие же выполняется, проверяется состояние датчика. Если он уже сработал (AF = «1»), то никаких дальнейших действий выполнять не нужно, и МК сразу переводится в режим LPM3. Если же датчик еще не сработал (AF = «0»), то выполняется инкрементирование счетчика SC с целью подсчета числа обнаруженных выполнений условия срабатывания, что в еще большей степени позволяет повысить помехоустойчивость. Позитивное решение о срабатывании датчика принимается после обнаружения трех подряд условий срабатывания. Однако во избежание чрезмерного затягивания задержки реагирования на появление дыма, длительность нахождения в дежурном режиме сокращается до четырех секунд после первого выполнения условия срабатывания и до одной секунды - после второго. Описанный алгоритм реализует программа, доступная .

В заключение определим средний потребляемый датчиком ток. Для этого в таблицу 1 занесены данные по каждому потребителю: потребляемый ток (I) и длительность его потребления (t). Для циклически-работающих потребителей, с учетом восьмисекундной паузы, средний потребляемый ток (мкА) равен I × t/8 × 10 6 . Суммируя найденные значения, находим средний потребляемый датчиком ток: 2 мкА. Это очень хороший результат. Например, при использовании батареек емкостью 220 мА·ч расчетная длительность работы (без учета саморазряда) составит около 12 лет.

Таблица 1. Средний потребляемый ток с учетом восьмисекундной паузы в работе датчика

Выбор микроконтроллера, используемого в центральном блоке, обусловливается объемом памяти программ, памяти данных, числом портов ввода/вывода быстродействием.

Будем использовать микроконтроллер ATmega.

Оценим объем памяти программ.

Алгоритм функционирования центрального блока в режиме инициализации состоит из 32 элементарный действий. Каждое действие выполняется в среднем с помощью 5 команд. В самом общем случае команда микроконтроллера выбранной серии состоит из 16 разрядов. Объем памяти программ микроконтроллеров ATmega оценивается в 16-разрядный словах. Таким образом, программа, выполняемая центральным блоком в режиме инициализации, займет в памяти программ ячеек памяти.

Алгоритм функционирования центрального блока в режиме тестирования состоит из 35 элементарный действий. Каждое действие также как и в режиме инициализации, выполняется в среднем с помощью 5 команд. Следовательно, программа, выполняемая центральным блоком в режиме тестирования, займет в памяти программ ячеек памяти.

Алгоритм функционирования центрального блока в рабочем режиме состоит из 31 элементарного действия. Каждое действие также как и в режиме инициализации, выполняется в среднем с помощью 5 команд. Следовательно, программа, выполняемая центральным блоком в режиме тестирования, займет в памяти программ ячеек памяти.

Алгоритм функционирования центрального блока при выполнении подпрограммы обработки сигнала датчика состоит из 11 элементарных действий. Каждое действие также как и в режиме инициализации, выполняется в среднем с помощью 5 команд. Следовательно, программа, выполняемая центральным блоком в режиме тестирования, займет в памяти программ ячеек памяти.

Следовательно, вся программа займет

ячеек памяти.

В память программ записываются пять параметров помещения:

1. Коэффициент полезного действия, сгоревшего топлива;

2. Удельная скорость выгорания;

Каждый из указанных параметров помещения займет одну ячейку памяти. Следовательно, параметры помещения займут в памяти программ

ячеек памяти.

При инициализации в память программ записываются адреса датчиков периферийного оборудования. Поскольку система пожарной сигнализации рассчитана на подключение 2016 датчиков, то для записи адресов датчиков необходимо

ячеек памяти.

Таким образом, необходимые исходные данные займут

ячейку памяти.

Всего для текста программы и исходных данных потребуется

ячеек памяти.

Память данных микроконтроллера должна одновременно хранить результаты измерений температуры помещения двумя датчиками, 2 пороговых значения температуры для данного помещения, 2 адреса датчика, адрес центрального прибора или мультиплексора, 2 результата сравнения значений температур с пороговыми значениями, состояние 13 счетчиков циклов, максимальное допустимое число циклов. Таким образом, минимальное число ячеек памяти данных должно быть равно

Оценим необходимое число портов ввода/вывода, требуемое для подключения периферийных устройств к микроконтроллеру.

Для подключения стандартного программатора необходимо задействовать

последовательных порта.

Для организации последовательного интерфейса RS232 необходимо использовать 2 последовательных порта. Учитывая, что с помощью одной шины указанного интерфейса осуществляется обмен с центральными приборами, а с помощью второй шины производится обмен с информационной системой высшего уровня, то необходимо использование

последовательных порта.

Центральный блок должен принимать сигналы, поступающие от типовых ручных пожарных извещателей. Типовые ручные пожарные извещатели представляют собой адресные устройства, поэтому для приема сигналов от них достаточно использовать

последовательный порт ввода. Все ручные пожарные извещатели необходимо подключить к одному шлейфу.

В центрально приборе предусматривается временное хранение информации о показаниях датчиков. Следовательно, необходимо организовать программное управление работой микросхем внешней памяти. Современные микросхемы внешней последовательной памяти имеют 6 выводов, из которых на один подается сигнал выбора микросхемы. Для упрощения процедуры управления подобной памятью на каждый элемент памяти удобно подавать сигнал выбора микросхемы отдельно. Таким образом, для управления внешней памятью необходимо

последовательных портов ввода/вывода, где K -- число микросхем внешней последовательной памяти.

Следовательно, для организации работы устройств, подключаемых к микроконтроллеру центрального блока, необходимо

последовательных портов ввода/вывода.

Выберем микроконтроллер ATmega128 . Данный микроконтроллер имеет 128 кБайт внутрисистемно программируемой флэш-памяти программ, 4096 байт внутреннего статического ОЗУ данных и 4 кБайт ЭСППЗУ для энергонезависимого хранения данных. Тактовая частота микроконтроллера равна 16 МГц и определяется внутренним кварцевым генератором. Потребляемый ток равен 24 мА, при напряжении питания 5 В и тактовой частоте 16 МГц.

Принципиальная электрическая схема ячейки периферийного обородувония представлена на рисунке 1.1. Микроконтроллер включен по рекомендуемой производителем схеме. Частота кварцевого резонатора ZQ1 равна 16 МГц, емкости конденсаторов С 2, С 3 в соответствии с рекомендациями производителя приняты равными 22 пФ.

При подключении к центральному блоку выносных пультов управления и системы высшего уровня с помощью интерфейса RS232 необходимо обеспечить согласование уровней сигналов микроконтроллера и интерфейса. Для согласования уровней сигналов будем использовать микросхему DD 1-DD 9 приемопередатчика MAX232 в стандартной схеме включения. Производитель рекомендует емкости конденсаторов С 4…C 18 принять равными 1 мкФ.

Данная простая мини-охранная сигнализация на микроконтроллере ATtiny 13 предназначена для охраны квартир, офисов, дач... При размыкании геркона сигнализация подаёт звуковой сигнал или при небольшой доработке можно сделать отправку SMS с мобильного телефона. Управление сигнализацией осуществляется ИК-брелками. Основные характеристики: динамическое питания фотоприёмника, пробуждение из режима "SLEEP" по прерыванию от сторожевого таймера в режиме "POWER-DOWN", и как следствие низкое энергопотребление - около 30мкА.

Принципиальная схема устройства довольна проста. ИК-приёмник - TSOP1736. Сердцем устройства является микроконтроллер ATtiny13. При размыкании контактов геркона срабатывает сигнализация. Принципиальная схема охранной сигнализации (для увеличения кликните по схеме):

Собранное устройство выглядит так:

Ик-передатчик для управления охранной сигнализацией собран на микроконтроллере ATtiny13 и десятке пассивных компонентов. Вместо транзистора BC847 можно использовать любой маломощный транзистор, например, КТ 315. Источником питания служат две литий-ионные батарейки типа CR. Принципиальная схема ИК-брелка для управления охранной сигнализацией (установка охраны/снятие с охраны):

Собранный брелок управления:

При использовании многоканального (на 99 каналов) ИК-передатчика на микроконтроллере ATtiny24 можно одновременно использовать большое количество сигнализаций находящихся рядом, управляя ими по выбору. Принципиальная схема многоканального ИК-передатчика:

Собранный многоканальный ИК-передатчик:

Программирование сигнализации

Стирание всех брелков

Установите перемычку на JP1.
Раздастся звуковой сигнал, индикатор непрерывно мигает красным цветом 0,5 Гц

Добавление новых брелков

Установите перемычку на JP2.
Индикатор непрерывно мигает зелёным цветом 0,5 Гц.
В подтверждение записи брелка раздастся звуковой сигнал 1 раз.
Если память брелков заполнена индикатор непрерывно мигает красным цветом 0,5 Гц.

Работа с устройством

Состояние прибора – снят с охраны (мигает зелёный светодиод с частотой 1Гц)

Предлагаем схему универсальной охранной сигнализации на небольшом 8-ми выводном микроконтроллере ATTINY-13, при всей своей простоте реализующей множество удобных режимов работы.

Принципиальная схема охранного устройства

Алгоритм работа схемы

1. При включении питания, через 10 сек схема переходит в режим охраны, сигнализируя об этом подачей импульса длительностью 0,5 сек на сирену (при условии, что шлейфы замкнуты на корпус) и подается питание на светодиод который отображает «статус» системы.

1.1. Если на момент перехода в режим охраны один из шлейфов разорван то на сирену подается три импульса продолжительностью 0,5 сек и интервалом 0,5 сек, а светодиод «статус» начинает мигать 1 раз (если разорван шлейф №1), 2 раза (если разорван шлейф №2) и 3 раза (если разорваны шлейф №1 и №2) продолжительностью 1 сек и интервалом 0,5 сек с перерывом 4 сек, режим охраны не включается.

2. Если в режиме охраны шлейф №1 разрывается, то с задержкой 3 сек (для ручного снятия с охраны) начинается оповещение (импульс на сирену продолжительностью 60 сек и импульс продолжительностью 3 сек на светодиод оптопары).
Светодиод «статус» начинает мигать, как указано в п.1.1.

2.1. Если, с момента первого разрыва шлейфа №1, в течении 3-х минут шлейф не восстановлен то выдается повтор оповещения.

2.2. Если, с момента первого разрыва шлейфа №1, в течении 6-ти минут шлейф не восстановлен то выдается повтор оповещения.

2.3 Если, с момента первого разрыва шлейфа №1, шлейф не восстановлен в течении 7-ми минут то на светодиод оптопары подается 6 импульсов продолжительностью 3 сек с периодичностью 60 минут. На период разрыва шлейфа №1 охрана ведется по шлейфу №2.

2.4 Если во время процессов оповещения по шлейфу №1 происходит разрыв шлейфа №2, то оповещение по шлейфу №2 происходит с задержкой 60 сек.

2.5 Если по истечению 60 сек. после первого разрыва шлейф №1 восстановлен на период 10 сек., на любом этапе, то через 10 сек. схема продолжает работу с п.2, за исключением светодиода «статус» который запоминает что шлейф №1 был разорван (повторение п.2.5 возможно не более 10 раз).

3. Если в режиме охраны шлейф №2 разрывается начинается оповещение (импульс на сирену продолжительностью 60 сек и импульс продолжительностью 3 сек на светодиод оптопары). Светодиод «статус» начинает мигать, как указано в п.1.1.

3.1. Если, с момента первого разрыва шлейфа №2, в течении 3-х минут шлейф не восстановлен то выдается повтор оповещения.

3.2. Если, с момента первого разрыва шлейфа №2, в течении 6-ти минут шлейф не восстановлен то выдается повтор оповещения.

3.3 Если, с момента первого разрыва шлейфа №2, шлейф не восстановлен в течении 7-ми минут то на светодиод оптопары подается 6 импульсов продолжительностью 3 сек с периодичностью 60 минут. На период разрыва шлейфа №2 охрана ведется по шлейфу №1.

3.4 Если во время процессов оповещения по шлейфу №2 происходит разрыв шлейфа №1, то оповещение по шлейфу №1 происходит с задержкой 60 сек.

3.5 Если по истечении 60 сек. после первого разрыва шлейф №2 восстановлен на период 10 сек., на любом этапе, то через 10 сек. схема продолжает работу с п.3 за исключением светодиода «статус» который запоминает что шлейф №2 был разорван (повторение п.3.5 возможно не более 10 раз).

© 2024 softlot.ru
Строительный портал SoftLot