Приборная шкала для измерения угла. Измерение горизонтальных углов

Для контроля углов применяют различные средства: угольники, угловые меры, конические калибры, угломеры, механические и оптические делительные головки, гониометры, синусные линейки и др. Угольники, калибры и угловые меры являются жесткими контрольными инструментами, они имеют определенные значения углов. Угольники подразделяются на цельные (рис. 28, а) и составные (рис. 28, б). Угловые меры – плитки (рис. 28, в) выпускаются наборами с таким расчетом, чтобы из трех – пяти мер можно было составлять блоки в пределах от 10 до 90 0 ; их изготовляют в виде плиток толщиной 5 мм с точностью угла (1-й класс) и (2-й класс). Они имеют или один рабочий угол или четыре рабочих угла: .

Угловые меры в основном применяют для поверки и градуировки различных средств измерения углов , но они могут применяться и непосредственно для измерения углов у деталей машин.

Для измерения углов у деталей чаще всего пользуются универсальными угломерами: нониусными с величиной отсчета , оптическими с величиной отсчета , индикаторными с величиной отсчета .


Рис. 28. Виды жестких измерительтельных средств:

а – цельный угольник, б – составной, в – угловая мера.

Угломер с нониусом (рис. 29) состоит из трех основных частей: жестко скрепленных линейки 1 и лимба 2 , который имеет полукруглую форму; жестко скрепленных линейки 5 с сектором 3 и дополнительного угольника 6 , которым пользуются при измерении острых


углов (менее 90 0). Линейка 5 вращается на оси 4 , связанной с лимбом. На дуге лимба 2 нанесена шкала с ценой деления 1 0 , а на дуге сектора 3 – нониус, который дает возможность отсчитывать дробные части шкалы.

Рис. 29. Нониусный угломер.

Для измерения острых углов (менее 90 0) к линейке 5 присоединяют дополнительный угольник 6 .

Нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы лимба 2 , - число минут.

При измерении тупых углов (более 90 0) дополнительный угольник 6 не нужен, но в этом случае к показаниям, снятым по шкале, необходимо еще прибавлять 90 0 .

Находят применение также оптические угломеры, имеющие две линейки и корпус, в котором размещен стеклянный диск со шкалой, разделенной на градусы и минуты.


Рис. 30. Схема измерения угла конуса на синусной линейке.

Отчет производится после того, как положение угломера зафиксировано зажимным рычагом.

Косвенные методы контроля конусов . Наиболее точными и широко применяемыми являются косвенные методы измерений, при которых измерят не непосредственно углы конусов, а линейные размеры, геометрически связанные с углами.

После определения значения этих линейных размеров расчетом находят и значения углов.

Измерение с помощью линейки . Синусные линейки, выпускаемые инструментальной промышленностью, делятся на три типа: тип I – без опорной плиты, тип II – с опорной плитой, тип III – с двумя опорными плитами и двойным наклоном.

Предметный столик 1 (рис. 30 ) синусной линейки имеет два ролика 2 и 3 с определенным расстоянием между ними L . Если под одним из роликов подложить блок 4 из плоскопараллельных концевых мер размером h , то предметный столик наклонится на угол и его можно определить по формуле:

.

При измерении угла конуса проверяемое изделие устанавливают на предметный столик, ориентируя его так, чтобы измеряемый угол находился в плоскости, перпендикулярной роликам синусной линейки (для этого используют боковые поверхности предметного столика). Установив изделие 5 на предметный столик 1, под ролик подкалывают блок из плоскопараллельных концевых мер 4. Размер блока определяют по формуле

,

где - номинальное значение измеряемого угла.

При разности показаний измерительной головки 6 в двух положениях на измеряемой длине можно определить отклонения измеряемого угла () от номинального значения по формуле

.

Действительную величину угла можно определить, подобрав такой блок плиток, при котором показания измерительной головки не будет отличаться на всей измеряемой длине.

Измерение наружных конусов с помощью роликов . Этот косвенный метод измерения (рис. 31 ) угла конуса изделия 1 осуществляется при использовании плиты 2, двух роликов 3 одинакового размера (можно использовать ролики от роликовых подшипников), концевых мер 4 и микрометра с ценой деления 0,01 мм или рычажного с ценой деления 0,002 мм .


Рис. 31. Схемы измерения угла конуса с помощью калиброванных

роликов (а, б),колец (в), шариков (г).

Сначала измеряют размер по диаметрам роликов 3 (рис. 31,а ), затем под ролики подкладывают блоки из концевых мер 4 одинакового размера и определяют размер (рис. 31,б ). Зная размеры , , находят конусность по формуле

или ,

По такому же принципу измеряют конусность у вала с помощью двух калиброванных колец (рис. 31,в ) с заранее известными диаметрами D и d и толщиной . После надевания колец на конус вала измеряют размер H и определяют тангенс угла по формуле

.

Измерение внутренних конусов . Угол внутреннего конуса определяют с помощью двух шариков, диаметры которых заранее известны, и глубиномера (рис. 31,г ).

Втулку 1 ставят на плиту 2, закладывают внутрь шарик малого диаметра d и измеряют при помощи глубиномера (микрометрического или индикаторного) размер , затем закладывают шарик большего диаметра D и измеряют размер . При таком методе измерения конусность втулки определяют по формуле:

.

Контроль конусов калибрами

Контроль калибрами (рис. 32) основан на проверке отклонений базорасстояния по методу осевого перемещения калибра относительно проверяемой детали или на проверке по краске.


Рис. 32. Конусные калибры:

а – втулка, б – пробка, в – скоба.

Калибрами для проверки наружных конусов служат втулки (рис. 32, а ) или скоба (рис. 32, в ), а для внутренних конусов – пробки (рис. 32, б ), со стороны большого диаметра которых наносятся риски на расстоянии от торца калибра, равном допуску базорасстояния .

Торец проверяемых конических вала и втулки при сопряжении с калибром не должен выходить за пределы рисок или уступа на калибре. Если это условие нарушено, то угол конуса выходит из установленных пределов (допуска).

Конусные калибры – втулки проверяют по контрольным калибрам – пробкам. Контрольные калибры изготовляют с повышенной точностью конусности и проверяют универсальными средствами.

Вопросы для повторения:

1. Сколько степеней точности установлено для допусков на угловые размеры и почему допуск на угол уменьшается с увеличением длины меньшей стороны угла?

2. Назовите примеры применения конических соединений и их преимущества в сравнении с цилиндрическими соединениями.

3. Начертите конус и покажите основные параметры его.

4. Что называется базорасстоянием и в какой зависимости находится изменение его величины от допусков на диаметры конуса и конусности?

5. Как устроен угломер с нониусом и какие углы им можно измерять?

6. Расскажите о косвенных методах измерения угла наружного и внутреннего конусов.

7. Как осуществляется контроль наружных и внутренних конусов коническими калибрами?

Литература:


Лекция 7 . ДОПУСКИ, ПОСАДКИ И СРЕДСТВА ИЗМЕРЕНИЯ

РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Основные элементы метрической крепежной резьбы

и допуски на них

В машиностроении применяют различные резьбовые соединения: цилиндрические, конические, трапецеидальные и др. Эти резьбы имеют ряд общих признаков, а так как наиболее распространенными являются цилиндрические крепежные резьбовые соединения с треугольным профилем, то применительно к ним и будут рассмотрены допуски, методы и средства контроля.



Профиль метрической цилиндрической резьбы (рис. 33, а) представляет собой равносторонний треугольник с углом при вершине , равным 60 0 . Основными параметрами резьбы, общими для наружной резьбы (болта) и внутренней резьбы (гайки), являются: наружный диаметр и , внутренний диаметр и , средний диаметр и , шаг резьбы , угол профиля , угол между стороной витка и перпендикуляром к оси резьбы , теоретическая высота витка , рабочая высота витка резьбы . При измерении угла профиля и расчетах допусков учитывается угол , так как при нарезании резьбы ее профиль может быть завален на сторону так, что с правой стороны будет больше или меньше, чем с левой стороны, а в целом весь угол профиля может быть равен 60 0 .

Рис. 33. Метрическая цилиндрическая резьба:

а – профиль резьбы, б – схема расположения полей допусков.

Под средним диаметром понимают диаметр воображаемого, соосного с резьбой, цилиндра, который делит профиль резьбы так, что толщина витка, ограниченная на рис. 33, а буквами а – б, равна ширине впадины, ограниченной буквами б – в . Шаг резьбы – это расстояние вдоль оси резьбы между параллельными сторонами двух рядом лежащих витков.

Единой системой допусков и посадок СЭВ для метрической резьбы с размерами от 0,25 до 600 мм предусмотрены три стандарта: СТ СЭВ 180-75 определяет профиль резьбы; СТ СЭВ 181-75 – диаметры и шаги; СТ СЭВ 182-75 – основные размеры. Предельные отклонения и допуски резьбовых соединений с зазорами устанавливает СТ СЭВ 640-77.

Значения диаметров резьбы разбиты на 3 ряда (1, 2 и 3-й). При выборе диаметров резьбы предпочтительным является первый ряд. Второй ряд диаметров резьбы берется, если диаметры 1-го ряда не удовлетворяют требованиям конструктора; в последнюю очередь диаметры берутся из 3-го ряда. По числовой величине шага резьбы для диаметров 1-64 мм делятся на две группы: с крупным шагом и мелкие, а резьбы диаметром свыше 64 мм , (до 600 мм ) имеют только мелкие шаги.


Допуски для цилиндрической крепежной резьбы () установлены на следующие параметры: на средний диаметр болта и гайки в виде величин и , (поле допуска для гайки расположено в плюс, а для болта – в минус от номинального размера); на наружный диаметр болта и на внутренний диаметр гайки .

Допуски на наружный диаметр гайки и внутренний диаметр болта не установлены. Технология нарезания резьбы и размеры резьбообразующих инструментов (метчиков, плашек и др.) гарантируют, что наружный диаметр резьбы гайки не будет меньше теоретического, а внутренний диаметр резьбы болта – больше теоретического.

На шаг резьбы и угол профиля в отдельности допуски не установлены, а возможные отклонения по ним допускаются за счет изменения среднего диаметра резьбы в пределах его допуска. Такая компенсация погрешностей шага и угла за счет допуска , возможна потому, что шаг и угол геометрически связаны со средним диаметром.

Углы и конусы измеряют с помощью угловых мер, шаблонов, угольников, конусных калибров, шариков, синусных и тангенсных линеек, универсальных микроскопов (координатным методом), оптических делительных головок, угломеров с нониусом и др.

Наиболее распространенным методом является измерение углов и конусов угловыми мерами и угольниками . Угловые меры (плитки) комплектуют в наборы по 5, 19, 36 и 94 шт., из которых выбирают соответствующие плитки или блоки для измерения заданных углов (не менее 10°). Они представляют собой трех- или четырехгранные призмы с одним или четырьмя рабочими углами.

Измерение с помощью плиток основано на установлении размера наибольшего просвета между сторонами измеряемого утла и угловой меры пли полного отсутствия просвета между ними. Просвет сравнивают на глаз с набором просветов, размеры которых известны (5... 10 мкм), или же оценивается с помощью щупов (свыше 30 мкм). По точности изготовления угловые плитки 1-го класса имеют допуск рабочего угла ±10", 2-го класса ±30".

Для измерения прямых углов в зависимости от требуемой точности применяют угольники различных типов. Метод измерения, так же как и у плиток, основан на измерении просвета между измерительной и измеряемой поверхностями и протяженности касания этих поверхностей.

Углы у конических валов и втулок измеряют угломерами. Для повышения точности отсчета угломеры снабжены нониусами или оптическими приспособлениями.

Для проверки угла конусности вала применяют конусные калибры-втулки (полные и неполные), а для проверки угла конусных втулок - конусные калибры - пробки . Для проверки угла конусности вала вдоль образующей конуса наносят карандашом прямую линию и осторожно вводят вал внутрь конусного калибра-втулки. Приложив некоторое осевое усилие для плотного прилегания конических поверхностей вала и втулки, поворачивают их относительно друг друга на небольшой угол. Если образующая конуса вала прямолинейна и угол конуса выполнен правильно, то графит карандаша равномерно распределится по всей длине конуса, в противном случае образуются только отдельные пятна. При проверке внутренней конической поверхности детали карандашную линию наносят на калибр-пробку.

Контроль резьбы

Точность резьбы определяется точностью исполнения основных элементов резьбы болта и гайки: наружного диаметра, среднего диаметра, внутреннего диаметра, шага, угла профиля. Контроль резьбы болта и гайки можно произвести комплексным методом по всем элементам одновременно или поэлементно с помощью калибров или специальных приспособлений. Для точных резьб и калибров обычно применяют поэлементную проверку резьбы на приборах.

Наиболее простым является контроль наружного диаметра болта и внутреннего диаметра гайки. Эти элементы резьбы измеряют гладкими скобами и пробками , а. также с помощью микрометра или штангенциркуля.

Измерение внутренних диаметров резьбы болта может быть произведено резьбовым микрометром , устройство которого сходно с устройством обыкновенного микрометра, только вместо гладких наконечников он снабжен специальными вставками, позволяющими измерять внутренний и средний диаметры болта. Резьбовые вставки делают сменными в зависимости от шага проверяемой резьбы. Для измерения внутреннего диаметра резьбы болта применяют две призматические вставки такой формы, чтобы вершины их касались впадин резьбы.

Для измерения среднего диаметра резьбы болта применяют вставки, которые касаются боковыми гранями боковых сторон профиля резьбы

вблизи от среднего диаметра. Эти вставки выполняют с укороченным профилем. Вставки могут поворачиваться в опорах измерительных пяток и самоустанавливаться относительно наклонной части профиля резьбы.

У резьбового микрометра с интервалом измерений 0...25 мм проверку правильности отсчета производят сводя обе вставки до упора; при этом показание нашкале микрометра должно быть равным нулю. При пользовании резьбовым микрометром необходимо проверяемый болт установить между резьбовыми вставками и дальше производить измерение, как на обычном микрометре; нужно только следить, чтобы ось измерительных наконечников проходила через ось болта. Рисунок 1.35

Резьбовым микрометром измеряют средний диаметр болта прямым методом, т. е.результаты измерений отсчитывают непосредственно по шкале прибора. Цена деления шкалы барабана резьбового микрометра 0,01 мм. Средний диаметр резьбы можно измерить также косвенным методом трех проволочек. Этот метод заключается в том, что во впадины резьбы болта по обе его стороны закладывают три проволочки одинакового известного диаметра, затем микрометром с плоским наконечником определяют расстояние М между внешними поверхностями проволочек (рис. 1.35). Последующим расчетом по значению этого расстояния определяют значение среднего диаметра резьбы. Три проволочки применяют для того, чтобы предотвратить перекос измерительных наконечников микрометра. Зная диаметр проволочек d, шаг резьбы S и расстояние между внешними поверхностями заложенных проволочек М, средний диаметр метрической резьбы d cp болта определяют по формуле

d cp = M-3d+ 0,866S

Этот метод измерения дает более высокую точность, чем измерение посредством резьбового микрометра. Поэтому его применяют для измерения среднего диаметра калибров и других точных резьбовых деталей.

Шаг резьбы измеряют резьбовыми шаблонами, которые представляют собой наборы плоских стальных пластинок с вырезанным профилем резьбы разных шагов. Профиль проверяемой резьбы (по образующей) совмещают с одной из пластинок шаблона. При правильном изготовлении шага совмещение профиля резьбы и шаблона не дает световой щели.


Средства измерения углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).


а - для измерения наружных и внутренних углов: 1 - нониус; 2 - основание; 3 - линейка; 4 - стопор; 5 - сектор; 6 - угольник; 7 - съемная линейка; 8 - державка линейки; 9 - державка угольника; б - для измерения только наружных углов: 1 - державка угольника; 2 - угольник; 3 - линейка; Рисунок 2.13 Угломеры а, в - до 90 о: 1 - угольник; 2 - блок концевых мер длины; 3 - линейка; б - до 140 о; г,д - до 60 о; е - внутренних углов; пунктиром показаны положения подвижной измерительной линейки при измерении минимального размера в заданном диапазоне Рисунок 2.14 Приемы измерения углов различной величины

Приемы измерения углов смотрите рис. 2.14.



Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).

Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).

а - калибрами-пробками; б - калибрами-втулками Рисунок 2.17 Приемы измерения конусов

Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).

а - двусторонние; б - односторонние двухпредельные; в, г, д, е - предельные, измеряющие "на просвет"; ж,з - предельные, измеряющие "надвиганием"; и - предельные, измеряющие по методу "рисок" Рисунок 2.19 Предельные шаблоны для контроля линейных размеров

Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).

Рисунок 2.20 Резьбовые калибры (пробки и кольца) и приемы измерения резьбы

Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).

Рисунок 2.23 Набор плоскопараллельных концевых мер длины в футляре

Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.

а - составление блока требуемого размера; б - притирка плиток в блок; в - проверка погрешности микрометра; г - проверка межосевого расстояния; д - проверка предельных размеров скобы; е - измерение внутреннего диаметра; ж - разметка на плоскости; з - пространственная разметка Рисунок 2.25 Приемы измерения и разметки плоскопараллельными концевыми мерами длины

Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).

1 - линейка; 2 - державки; 3 – клиновые штифты; 4 - отвертка Рисунок 2.27 Набор принадлежностей к призматическим угловым мерам

Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.


Средства измерения углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).

а - для измерения наружных и внутренних углов: 1 - нониус; 2 - основание; 3 - линейка; 4 - стопор; 5 - сектор; 6 - угольник; 7 - съемная линейка; 8 - державка линейки; 9 - державка угольника; б - для измерения только наружных углов: 1 - державка угольника; 2 - угольник; 3 - линейка; Рисунок 2.13 Угломеры а,в - до 90 о: 1 - угольник; 2 - блок концевых мер длины; 3 - линейка; б - до 140 о; г,д - до 60 о; е - внутренних углов; пунктиром показаны положения подвижной измерительной линейки при измерении минимального размера в заданном диапазоне Рисунок 2.14 Приемы измерения углов различной величины

Приемы измерения углов смотрите рис. 2.14.


а - калибрами-пробками; б - калибрами-скобами Рисунок 2.16 Приемы измерения

Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).

Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).



Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).


Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).



Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).


Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.

а - составление блока требуемого размера; б - притирка плиток в блок; в - проверка погрешности микрометра; г - проверка межосевого расстояния; д - проверка предельных размеров скобы; е - измерение внутреннего диаметра; ж - разметка на плоскости; з - пространственная разметка Рисунок 2.25 Приемы измерения и разметки плоскопараллельными концевыми мерами длины

Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).


Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.


Существуют следующие методы измерений и контроля углов и конусов:


- метод сравнения с жесткими контрольными инструментами - угловыми мерами, угольниками, конусными калибрами и шаблонами;


- абсолютный гониометрический метод , основанный на использовании приборов с угломерной шкалой (нониусные, индикаторные и оптические угломеры);


- косвенный тригонометрический метод , основанный на определении линейных размеров, связанных с измеряемым углом тригонометрической функцией (синусные линейки, конусомеры).

Таблица 2.14. Средства измерений и контроля углов и конусов

Название

Точность измерений

Пределы измерений

Назначение

Синусная линейка (ГОСТ 4046 - 80)

±1,5" для угла 4°

Расстояние между осями 100... 150 мм. Измерение наружных углов 0...45°

Измерение углов калибров, линеек и точных деталей

Линейка поверочная (ГОСТ 8026-92)

Контроль отклонения деталей от плоскостности, прямолинейности, при разметке ИТ.Д.

Уровни (ГОСТ 9392-89, ГОСТ 11196-74)

0,02...0,2 мм/м

Цена деления 0,01...0,15 мм/м. Рабочая длина 100...250 мм

Измерение малых угловых отклонений от горизонтального и вертикального положения приборов, устройств, элементов конструкций и т. д.

Мера угловая призматическая (плитка) (ГОСТ 2875-88)

Тип I: 1"... 9° Тип II: 10...75°50"

Проверка угломерных средств измерений, точной разметки, ! точного измерения углов

Угломер с нониусом типов УН и УМ (ГОСТ 5378-88)

0... 180° (наружных углов),

40... 180° (внутренних углов)

Тип УН для измерения наружных и внутренних углов, тип УМ - для наружных

Угольники поверочные 90 (ГОСТ 3749-77)

Проверка перпендикулярно сти

Краткая характеристика средств измерений и контроля углов и конусов представлена в табл. 2.14. Рассмотрим некоторые из них.


Угловые меры и угольники .


Меры угловые призматические предназначены для передачи единицы плоского утла от эталонов к изделию. Они чаще всего применяются при лекальных работах, а также для поверки и калибровки средств измерений и контроля. Угловые меры (рис. 2.51) могут быть однозначными и многозначными, они представляют собой геометрическую фигуру в виде прямой призмы с доведенными поверхностями, являющимися сторонами рабочего утла.


В соответствии с ГОСТ 2875 - 88 призматические угловые меры изготавливают пяти типов: I, II, III, IV, V с рабочими углами α, β, γ, δ.


Плитки типа I имеют следующие номинальные размеры угла а: от 1 до 29" с градацией через 2" и от 1 по 9° с градацией через Г. Плитки типа II имеют следующие номинальные размеры угла α: от 10 до 75°50" с градацией значений угла 15", Т, 10", 1°, 15°10". Соответствующим ГОСТом установлены номинальные размеры рабочих углов α, β, γ, δ для плиток типа III, призм типа IV и призм типа V.


По точности изготовления различают угловые меры трех классов: 0, 1,2. Допускаемые отклонения рабочих углов, а также допускаемые отклонения от плоскостности и расположения измерительных поверхностей регламентируются в зависимости от типа мер и класса точности. Так, допускаемые отклонения рабочих углов находятся в пределах от +3 до +5" для мер 0-го класса и в пределах ±30" - для мер 2-го класса. Допускаемые отклонения от плоскостности установлены в пределах от 0,10 до 0,30 мкм.


Угловые меры комплектуются в наборы и могут поставляться в виде отдельных мер всех классов.


Рабочие поверхности угловых мер обладают свойством притираемости, т. е. из них могут создаваться блоки. С этой целью, а также для получения внутренних углов предусмотрены специальные принадлежности и лекальные линейки, которые комплектуются в набор принадлежностей. При составлении блоков угловых мер необходимо соблюдать те же правила, что и при составлении блоков из плоскопараллельных концевых мер длины (см. подразд. 2.2.1).


Это угловая мера с рабочим углом 90°. При контроле с помощью угольников оценивают величину просвета между угольником и контролируемой деталью. Просвет определяют на глаз или сравнением с просветом, созданным при помощи концевых мер длины и лекальной линейкой, а также набором щупов.



Рис. 2.51.


В соответствии с ГОСТ 3749 - 77 угольники различаются: по конструктивным признакам - шесть типов (рис. 2.52), по точности- три класса (0, 1, 2). Лекальные угольники (типы УЛ, УЛП, УЛШ, УЛЦ) изготавливают закаленными классов 0 и 1 и применяют для лекальных и инструментальны работ (рис. 2.52, а, б). Слесарные угольники типов УП и УШ (рис. 2.52, в, г) применяют для нормальных работ в машиностроении и приборостроении.





Рис. 2.52. :


а и б - лекальные угольники; в и г - слесарные угольники


Допускаемые отклонения угольников установлены в зависимости от их класса и высоты Н. Так, для угольника 1-го класса с высотой 160 мм отклонение от перпендикулярности измерительных поверхностей к опорам не должно превышать 7 мкм, отклонение от плосткостности и прямолинейности измерительных поверхностей должно находиться в пределах 3 мкм. Для угольника с высотой 400 мм эти значения составляют соответственно 12 и 5 мкм, а для аналогичных угольников 2-го класса 30 и 10 мкм.



Рис. 2.53. :


а и б - угломеры типа УН; в - порядок отсчета по нониусу; гид- угломеры типа УМ; 1 - полудиск; 2 - ось; 3 - винт зажима угольника; 4 - добавочный угольник; 5 - подвижная линейка; 6 - неподвижная линейка; 7 и 8 - устройства для микрометрической подачи; 9 - стопорный винт; 10 - нониус



Рис. 2.54. :


а - тип I; б - тип II; в - тип III: 7 - стол; 2 - роликовые опоры; 3 - боковые планки; 4 - резьбовые отверстия; 5 - передняя планка


Угломерные приборы .


Эти приборы основаны на прямом измерении углов с помощью угломерной шкалы. Наиболее известными средствами измерений из этого ряда являются утломеры с нониусом, оптические делительные головки (см. подразд. 2.2.4), оптические утломеры, уровни, гониометры и др.


(ГОСТ 5378 - 88) предназначены для измерения угловых размеров и разметки деталей. Угломеры выпускаются двух типов. Угломеры типа УН (рис. 2.53, а, б) предназначены для измерения наружных углов от 0 до 180°, внутренних углов от 40 до 180° и имеют величину отсчета по нониусу 2 и 5". Угломер состоит из следующих основных деталей: полудиска (сектора) 1, неподвижной линейки 6, подвижной линейки 5, зажимного винта угольника 3, нониуса 10, стопорного винта 9, устройств для микрометрической подачи 7 и 8, добавочного угольника 4, винта зажима добавочного угольника 3. Для измерения углов от нуля до 90° на неподвижную линейку 6 устанавливают добавочный угольник 4. Измерение углов от 90 до 180° производится без добавочного угольника 4. Порядок отсчета на угловом нониусе угломера аналогичен отсчету на линейном нониусе штангенциркуля (рис. 2.53, в).


Угломеры типа УМ предназначены для измерения наружных углов от 0 до 180° и имеют величину отсчета по нониусу 2 и 5" (рис. 2.53, г) и 15" (рис. 2.53, д). Предел допускаемой погрешности угломера равен величине отсчета по нониусу.





Рис. 2.55. :


1 - измеряемый конус; 2 - индикатор; 3- стол; 4 - блок концевых мер длины; 5 - поверочная плита

Для косвенных измерений углов при контрольно-измерительных работах, а также в процессе механической обработки применяют синусные линейки. Линейки выпускают трех типов:


Тип I (рис. 2.54, а) без опорной плиты с одним наклоном;


Тип II (рис. 2.54, б) с опорной плитой с одним наклоном;


Тип III (рис. 2.54, в) с двумя опорными плитами с двойным наклоном.


Синусная линейка типа I представляет собой стол 1, установленный на двух роликовых опорах 2. Боковые планки 3 и передняя планка 5 служат упорами для деталей, которые прикрепляются к поверхности стола прижимами с помощью резьбовых отверстий 4.


Синусные линейки выпускаются классов точности 1 и 2. Расстояние L между осями роликов может составлять 100, 200, 300 и 500 мм.


Измерение углов конусов на синусной линейке представлено на рис. 2.55. Стол 3, на котором закреплен измеряемый конус 1, устанавливают на требуемый номинальный угол а к плоскости поверочной плиты 5 с помощью блока концевых мер длины 4. Размер блока концевых мер определяют по формуле



где h - размер установочного блока концевых мер, мм; L - расстояние между осями роликов линейки, мм; α - угол поворота линейки.


Индикатором 2, установленным на штативе, определяют разность положений δh поверхности конуса на длине 1. Отклонение угла, ", при вершине конуса рассчитывают по формуле


δα = 2*10 5 δh/l.


Действительный угол проверяемого конуса ак определяют по формуле


αк = α ± δα ± Δл,


где Δл - погрешность измерения синусной линейкой, которая зависит от угла α, погрешности блока концевых мер длины и погрешности расстояния между осями роликов L.


Так, погрешности измерения углов синусными линейками с расстоянием между осями роликов 200 мм для измеряемых углов до 15 ° составляют 3", при измерении углов до 45° - 10", при измерении углов до 600 - 17", при измерении углов до 80° - 52".


Пределы допускаемой погрешности линеек при установке их на углы до 45 ° не должны превышать для 1-го класса ±10", а для 2-го класса - ±15".

© 2024 softlot.ru
Строительный портал SoftLot