Прямое и непрямое поражение током диэлектрики. Защита человека от поражения электрическим током, прямое и косвенное прикосновение

Характеристика поражений человека электрическим током. Электрическое сопротивление организма человека. 2

Основные причины поражения электрическим током. 3

Способы и средства, применяемые. 4

для защиты от поражения электрическим током. 4

при прикосновении к металлическим нетоковедущим частям, 4

оказавшимся под напряжением. 4

Организационные мероприятия, обеспечивающие безопасность работ в электроустановках. 4

Технические мероприятия, обеспечивающие безопасное выполнение работ в действующих электроустановках. 4


Характеристика поражений человека электрическим током. Электрическое сопротивление организма человека

Электрический ток, проходя через организм человека, оказывает био­логическое, электрохимическое, тепловое и механическое действие.

Биологическое действие тока проявляется в раздражении и возбужде­нии тканей и органов. Вследствие этого наблюдаются судороги скелетных мышц, которые могут привести к остановке дыхания, отрывным перело­мам и вывихам конечностей, спазму голосовых связок.

Электролитическое действие тока проявляется в электролизе (разло­жении) жидкостей, в том числе и крови, а также существенно изменяет функциональное состояние клеток.

Тепловое действие электрического тока приводит к ожогам кожного покрова, а также гибели подлежащих тканей, вплоть до обугливания.

Механическое действие тока проявляется в расслоении тканей и да­же отрывах частей тела.

Электротравмы условно можно разделить на местные, общие (элект­рические удары) и смешанные (местные электротравмы и электрические удары одновременно). Местные электротравмы составляют 20% учиты­ваемых электротравм, электрические удары - 25% и смешанные - 55%.

Местные электротравмы - четко выраженные местные нарушения тканей организма, чаще всего это поверхностные повреждения, т. е. повреж­дения кожного покрова, иногда мягких тканей, а также суставных сумок и костей. Местные электротравмы излечиваются, и работоспособность человека восстанавливается полностью или частично.

Характерные виды местных электротравм - электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механичес­кие повреждения.

Наиболее распространенные электротравмы - электрические ожоги. Они составляют 60 - 65%, причем около 1/3 их сопровождается другими электротравмами.

Различают ожоги: токовый (контактный) и дуговой.

Контактные электроожоги , т. е. поражения тканей в местах входа, вы­хода и на пути движения электротока возникают в результате контакта человека с токоведущей частью. Эти ожоги возникают при эксплуатации электроустановок относительно небольшого напряжения (не выше 1-2 кВ), они сравнительно легкие.

Дуговой ожог обусловлен воздействием электрической дуги, созда­ющей высокую температуру Дуговой ожог возникает при работе в электро­установках различных напряжений, часто является следствием случай­ных коротких замыканий в установках выше 1000 В и до 10 кВ или оши­бочных операций персонала. Поражение возникает от пламени электри­ческой дуги или загоревшейся от нее одежды.

Могут быть также комбинированные поражения (контактный элект­роожог и термический ожог от пламени электрической дуги или загорев­шейся одежды, электроожог в сочетании с различными механическими повреждениями, электроожог одновременно с термическим ожогом и ме­ханической травмой).

По глубине поражения все ожоги делятся на четыре степени: пер­вая - покраснение и отек кожи; вторая - водяные пузыри; третья - омертвление поверхностных и глубоких слоев кожи; четвертая - обуг­ливание кожи, поражение мышц, сухожилий и костей.

Электрические знаки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, под­вергшегося действию тока. Знаки имеют круглую или овальную форму с углублением в центре. Они бывают в виде царапин, небольших ран или ушибов, бородавок, кровоизлияний в коже и мозолей. Иногда их форма соответствует форме токоведущей части, к которой прикоснулся пострадавший, а также напоминает форму молнии. В большинстве слу­чаев электрические знаки безболезненны и их лечение заканчивается благополучно. Знаки возникают примерно у 20% пострадавших от тока.

Метаталлизация кожи - проникновение в ее верхние слои частичек металла, расплавившегося под действием электрической дуги. Это воз­можно при коротких замыканиях, отключениях разъединителей и рубиль­ников под нагрузкой и т. п.

Пораженный участок кожи имеет шероховатую поверхность, окраска
которой определяется цветом соединений металла, попавшего на кожу:
зеленая - при контакте с медью, серая - с алюминием , сине-

зеленая - с латунью, желто-серая - со свинцом.

Металлизация кожи наблюдается примерно у 10% пострадавших.

Этектроофтальмия - воспаление наружных оболочек глаз в результа­те воздействия мощного потока ультрафиолетовых лучей. Такое облуче­ние возможно при наличии электрической дуги (например, при коротком замыкании), которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей. Электро­офтальмия возникает сравнительно редко (у 1-2% пострадавших), чаще всего при проведении электросварочных работ.

Механические повреждения возникают в результате резких, непроиз­вольных, судорожных сокращений мышц под действием тока, проходяще­го через тело человека. При этом возможны разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и переломы костей. Механические повреждения - серьезные травмы; лечение их длитель­ное. Они происходят сравнительно редко.

Электрический удар - это возбуждение тканей организма проходящим через него электрическим током, сопровождающееся сокращением мышц.

Различают четыре степени электрического удара :

I - судорожное сокращение мышц без потери сознания;

II - судорожное сокращение мышц с потерей сознания, но с сохранив­шимся дыханием и работой сердца;

III - потеря сознания и нарушение сердечной деятельности или дыха­
ния (либо того и другого вместе)

IV - клиническая смерть, т. е. отсутствие дыхания и кровообращения,
Опасность воздействия электрического тока на человека зависит от

сопротивления организма человека и приложенного к нему напряжения, силы тока, длительности его воздействия, пути прохождения, рода и часто­ты тока, индивидуальных свойств пострадавшего и других факторов.

Электропроводность различных тканей организма неодинакова. Наи­большую электропроводность имеют спинномозговая жидкость, сыворот­ка крови и лимфа, затем - цельная кровь и мышечная ткань. Плохо проводят электрический ток внутренние органы, имеющие плотную бел­ковую основу, вещество мозга и жировая ткань. Наибольшим сопротивле­нием обладает кожа и, главным образом, ее верхний слой (эпидермис).

Электрическое сопротивление организма человека при сухой, чистой и неповрежденной коже при напряжении 15 - 20 В находится в пределах от 3000 до 100000 Ом, а иногда и более. При удалении верхнего слоя кожи сопротивление снижается до 500 - 700 Ом. При полном удалении кожи сопротивление внутренних тканей тела составляет всего 300 - 500 Ом. При расчетах принимают сопротивление организма человека, равное 1000 Ом.

Сопротивление тела человека зависит от пола и возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей - меньше, чем у взрослых, у молодых людей - меньше, ЧШ У ПОЖИЛЫХ: ЭТО объясняется толщиной и степенью огрубления верхнего слоя кожи.

На электрическое сопротивление влияют также род тока и частота его. При частотах 10 - 20 кГц верхний слой кожи практически утрачивает сопротивление электрическому току.

Основные причины поражения электрическим током

1. Случайное прикосновение к токоведущим частям, находящимся под напряжением в результате: ошибочных действий при проведении работ;

неисправности защитных средств, которыми потерпевший касался токоведущих частей и др.

2. Появление напряжения на металлических конструктивных частях
электрооборудования в результате:

повреждения изоляции токоведущих частей; замыкания фазы сети на землю;

падения провода, находящегося под напряжением, на конструктивные части электрооборудования и др.

3. Появление напряжения на отключенных токоведущих частях в ре­
зультате:

ошибочного включения отключенной установки;

замыкания между отключенными и находящимися под напряжением токоведущими частями;

разряда молнии в электроустановку и др.

4. Возникновение напряжения шага на участке земли , где находится
человек, в результате:

замыкания фазы на землю;

выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами);

неисправностей в устройстве защитного заземления и др.

Напряжение шага - напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновре­менно стоит человек.

Наибольшая величина напряжения шага около места замыкания, а наименьшая - на расстоянии более 20 м.

На расстоянии 1 м от заземлителя падение напряжения шага состав­ляет 68% полного напряжения, на расстоянии 10 м - 92%, на расстоянии 20 м - практически равно нулю.

Опасность напряжения шага увеличивается, если человек, подвергший­ся его воздействию, падает: напряжение шага возрастает, так как ток проходит уже не через ноги, а через все тело человека.

Способы и средства, применяемые

для защиты от поражения электрическим током

при прикосновении к металлическим нетоковедущим частям,

оказавшимся под напряжением

Для защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, оказавшимся под напряжением, при­меняют следующие способы и средства:

защитное заземление, зануление, выравнивание потенциалов, систему защитных проводников, защитное отключение, изоляцию нетоковедущих частей, электрическое разделение сети, малое напряжение, контроль изо­ляции, компенсацию токов замыкания на землю, средства индивидуаль­ной защиты.

Технические способы и средства применяют раздельно или в сочета­нии так, чтобы обеспечивать оптимальную защиту.

Организационные мероприятия, обеспечивающие безопасность работ в электроустановках

Организационными мероприятиями, обеспечивающими безопасность работы в электроустановках, являются:

оформление работы нарядом-допуском, распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации;

допуск к работе;

надзор во время работы;

оформление перерыва в работе, переводов на другое рабочее место, окончания работы.

Технические мероприятия, обеспечивающие безопасное выполнение работ в действующих электроустановках

В соответствии с требованиями Правил техники безопасности при эксплуатации электроустановок потребителей для подготовки рабочего места при работах со снятием напряжения должны быть выполнены в указанном порядке следующие технические мероприятия;

произведены необходимые отключения и приняты меры, препятству­ющие подаче напряжения на место работы вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры;

на приводах ручного и на ключах дистанционного управления коммута­ционной аппаратурой вывешены запрещающие плакаты;

проверено отсутствие напряжения на токоведущих частях, на которых должно быть наложено заземление для защиты людей от поражения элек­трическим током;

наложено заземление (включены заземляющие ножи, а там, где они отсутствуют, установлены переносные заземления);

Электротравма – этотравма, полученная вследствие поражения человека электрическим током или молнией .

Опасными для человека и приводящими к электротравме считаются сила тока превышающая 0,15Ампер, а также переменное и постоянное напряжение больше 36 Вольт. Последствия электротравмы могут быть самыми разными: удар током может вызвать остановку сердца, кровообращения, дыхания, потерю сознания. Почти всегда электротравма сопровождается повреждениями кожных покровов, слизистых оболочек и костей на месте входа и выхода электрического разряда, приводит к нарушению деятельности центральной и периферической нервной системы.

Знак тока – (син. электрометка) изменения эпидермиса или эпителия при поражении электрическим током. Повреждение тканей (кожи или слизистых оболочек) в месте контакта с проводником электрического тока значительной силы и (или) напряжения характеризуется сухим некрозом тканей (вплоть до обугливания) и импрегнацией их металлом проводника. Впервые описаны австрийским ученым St. Jellinek’ом. Форма чаще всего круглая или овальная, но может быть и линейной; цвет – светлее окружающей кожи, иногда серовато-белый или просто белый, по консистенции напоминают мозоли. Иногда по краям имеется валикообразное возвышение, вследствие чего середина углубленна. Знаки тока безболезненны, отсутствует воспалительная реакция. Иногда знаки тока могут повторять форму проводника. Атипичные знаки тока могут иметь вид ран с обожженными краями, ссадин, ожогов.

В окружности знаков тока наблюдается явление эпидермиолиза, чаще на месте вхождения тока, реже – на месте выхода тока.

Знаки тока устойчивы к действию внешних факторов, гниения. Длительное пребывание типичных знаков тока в водной среде почти не изменяло их вид. Макроскопически знаки тока можно обнаруживать при гнилостных изменениях тканей в сроки до 7-10 месяцев.

Микроскопическая знаков тока зависит от локализации их на теле. Происходят изменения рогового слоя. Он приобретает спонгиозный вид или может быть «вспученным» с образованием полостей различной величины (от 10 до 100 мкм) и формы (округлые, овальные, угловатые). Они часто объединены в группы, разделенные между собой тонкими перемычками.

Гребешковые выступы эпидермиса утрачивают свою округлость. Рельеф зернистого слоя выражен отчетливо. Ядра зернистых клеток несколько уплощаются и располагаются параллельно поверхности кожи. Ядра клеток базального и частично шиповатого слоев становятся гиперхромными, располагаются перпендикулярно или под углом к поверхности кожи, образуя фигуры «завихрения», напоминающие метелки, рыбьи хвосты, частокол.

Петля тока-

В зависимости от характера развивающихся нарушений принято разделять поражения электрическим током на местные (электроожоги) и общие (электротравма) симптомы. Эти нарушения очень часто сочетаются.

Местные симптомы

Возникающие при поражении током знаки тока характеризуются следующими признаками.

1. Отмечаются обычно небольшие (диаметром до 2-3 см) участки сухого некроза округлой или линейной формы, а иногда в виде отпечатка проводника. В центре - втяжение, края приподняты. Волосы скручены.

2. Гиперемия вокруг практически отсутствует.

3. Нет болевых ощущений.

4. Может иметь место металлизация пораженных участков из-за разбрызгивания мелких частиц проводника.

Электроожоги почти всегда глубокие. Отторжение продолжается долго как из-за глубины поражения, так и вследствие нарушения кровоснабжения в результате спазма и тромбоза кровеносных сосудов.

Осложнением электроожогов является вторичный некроз тканей из-за тромбоза магистральных сосудов вплоть до развития гангрены.

При поражении молнией образуются знаки молнии - древовидные разветвления и полосы гиперемии на коже (следствие поражения стенок кожных сосудов - паралич и стаз). Они исчезают через несколько дней.

Общие симптомы

Клиническая картина обусловлена тяжестью электротравмы. Превалируют изменения со стороны сердечно-сосудистой, дыхательной и центральной нервной системы.

Частота сердечных сокращений обычно уменьшена (брадикардия), пульс напряжен, тоны сердца глухие, возможна аритмия. В тяжелых случаях развивается фибрилляция сердца с прекращением кровообращения.

Спастическое поражение мышц гортани и дыхательной мускулатуры приводит к нарушению ритмичности и глубины дыхания и к развитию асфиксии.

Нарушения центральной нервной системы проявляются в разбитости, головокружении, нарушении зрения, усталости, а иногда и в возбуждении. Характерно наличие парезов, параличей и невритов. При судорожном сокращении мышц возможны их разрывы, а также компрессионные и отрывные переломы костей. При тяжелых поражениях отмечается потеря сознания. В позднем периоде возможно развитие недостаточности функции печени и почек.

Причиной внезапной смерти при поражении электрическим током являются фибрилляция желудочков и остановка дыхания. Смерть может наступить не сразу, а через несколько часов после травмы.

В некоторых случаях развивается так называемая «мнимая смерть» - состояние, при котором отсутствует сознание, сокращения сердца редкие и определяются с трудом, дыхание поверхностное, редкое, - то есть наблюдается крайнее угнетение основных жизненно важных функций. Несмотря на внешнее сходство, такое состояние не является клинической смертью, а наблюдаемые симптомы могут подвергнуться обратному развитию даже через довольно длительный промежуток времени. Поэтому при электротравме принято оказывать помощь (в том числе и реанимационные мероприятия) вплоть до появления трупных пятен и трупного окоченения.

Осложнения электротравмы

Электрический ожог может повредить нервную систему, сердце, кровеносные сосуды и почки. Повреждение органа может быть вызвано непосредственно током или, если разрушены клетки, прерыванием кровотока. Более того, отеки тканей еще больше нарушают кровоток.

При поражении сердца, мозга, спинного мозга нарушается сердечный ритм, что может повлечь за собой остановку сердца.

При поражении центральной нервной системы возникают спазмы, кома, остановка дыхания.

При повреждении спинного мозга человек испытывает крайнюю слабость, у него даже может развиться паралич.

Массивное нарушение притока крови к мышцам высвобождает большие количества гемоглобина и миоглобина. Они блокируют тончайшие протоки в почках, разрушая их. Это может вызвать отказ почек.

У пострадавшего возможны массированные кровотечения, камни в печени и катаракта.

Электротравма. Дать определение понятиям: прямое и непрямое поражение током, диэлектрики. Правила приближения к пострадавшему находящегося под воздействием электрического тока. Последовательность действий при оказании медицинской помощи.

Под прямым поражением электрическим током понимается полное прикосновение к оголенным проводам находящимся под рабочим напряжением. В свою очередь прямое прикосновение бывает нескольких видов:

Одновременное касание фазы провода и нулевой жилы.

Соприкосновение с двумя различными фазами, двумя руками.

В 2-х проводной электросети касание только одного провода.

Под косвенным поражением электрическим током понимается несознательное прикосновение к электроприбору находящимся под напряжением. Такая ситуация может произойти, если кабели люстры с торчащими с потолка кабелями прикрутили хорошо, а изолировали абы как. Вполне возможен смертельный удар электрическим током, когда кто-то будет протирать люстру от пыли.

Диэлектрик (изолятор) - вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 10 8 см −3 . Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле

Прикосновение к токоведущим частям, находящимся под напряжением, вызывает в большинстве случаев непроизвольное судорожное сокращение мышц и общее возбуждение, которое может привести к потере сознания, нарушению или полному прекращению деятельности органов дыхания и кровообращения. Если пострадавший держит провод руками, его пальцы так сильно сжимаются, что высвободить провод становится невозможно. Поэтому первым действием оказывающего помощь должно быть немедленное отключение участка электросети, которого касается пострадавший, выключателем, рубильником, путем вывертывания пробок на щитке. Если невозможно быстро отключить электроустановку из-за удаленности отключающих аппаратов, то можно перерубить провода (каждый в отдельности) любым режущим инструментов с рукояткой из изолирующего материала. Можно воспользоваться инструментом и с металлической рукояткой, предварительно обернув ее сухой тканью.

В случае если пострадавший находится на высоте, отключение установки может вызвать его падение; нужно принять меры, предупреждающие падение.

При отключении электроустановки может погаснуть свет. В связи с этим нужно позаботиться об освещении из другого источника (фонарь, факел, свечи и т.п.).

Оказывающий помощь не должен прикасаться к пострадавшему без надлежащих мер предосторожности, так как последний в данном случае является проводником электрического тока.

Для отделения пострадавшего от токоведущих частей или провода напряжением до 1000 В следует воспользоваться сухой одеждой, канатом, палкой, доской или каким-либо другим сухим предметом, не проводящим электрический ток. Для этих целей нельзя использовать металлические и мокрые предметы. Можно также взяться за одежду пострадавшего (если она сухая), например за полы пиджака или пальто, стараясь при этом не прикасаться к окружающим металлическим предметам и частям тела, не прикрытым одеждой. Оттаскивая пострадавшего за ноги, не следует касаться его обуви, не изолировав свои руки, так как обувь может быть сырой и проводить электрический ток.

Для того чтобы изолировать себя, оказывающий помощь (особенно если необходимо коснуться тела, пораженного током, не прикрытого одеждой) должен надеть диэлектрические перчатки или обмотать себе руки шарфом, использовать прорезиненную или просто сухую ткань; можно встать на сухую доску или другую не проводящую электрический ток подстилку, сверток одежды и т.п.

При отделении пострадавшего от токоведущих элементов рекомендуется действовать по возможности одной рукой. Для изолирования пострадавшего от земли или токоведущих частей напряжением выше 1000 В необходимо обратиться к специалистам, так как перечисленных мер безопасности в данном случае недостаточно.

Поражение производственного персонала электрическим током возможно как при прямом прикосновении – электрический контакт людей с токоведущими частями электрооборудования, находящимися под напряжением, так и при косвенном прикосновении – электрический контакт людей с открытыми проводящими частями электрооборудования, оказавшимися под напряжением при повреждении изоляции.

Для предупреждения поражения электрическим током в нормальном режиме работы Электросети должны быть применяются по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

основная изоляция токоведущих частей;

ограждения и оболочки;

установка барьеров;

размещение токоведущих частей вне зоны досягаемости;

применение сверхнизкого (малого) напряжения (СНН).

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ применяются также устройства защитного отключения (УЗО).

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов (см. ниже), а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока – во всех случаях.

Для защиты от поражения электрическим током в случае повреждения изоляции применяются по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

защитное заземление;

автоматическое отключение питания;

уравнивание потенциалов;

выравнивание потенциалов;

двойная или усиленная изоляция;

сверхнизкое (малое) напряжение;

защитное электрическое разделение цепей;

изолирующие (непроводящие) помещения, зоны, площадки.

Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных электроустановках защита при косвенном прикосновении производится при более низких напряжениях: 25 В переменного и 60 В постоянного тока – в помещениях с повышенной опасностью; 12 В переменного и 30 В постоянного тока – в особо опасных помещениях и в наружных электроустановках.

Защита от прямого прикосновения.

Основная изоляция токоведущих частей:

Основная изоляция токоведущих частей должна иметь сопротивление, обеспечивающее утечки тока через неё, не превышающие безопасных величин (1 мА для переменного тока промышленной частоты). Для изоляции используются материалы, обладающие также механической прочностью, устойчивостью к воздействию агрессивных сред, повышенных температур и др. производственных факторов. Широкое распространение на практике получили изоляционные материалы на основе каучука, пластических масс, керамики, стекловолокна и др. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током. Изоляция электроустановок перед вводом их в эксплуатацию подвергается испытанию в соответствии с требованиями ПУЭ. Например, для электроустановок напряжением до 1 кВ сопротивление изоляции должно быть не < 0,5 МОм при испытании напряжением 1 кВ.

Ограждения и оболочки:

Ограждения и оболочки в электроустановках напряжением до 1 кВ представляют собой сплошные или сетчатые устройства, предотвращающие несанкционированный доступ к открытым токоведущим частям электроустановок. Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей.

Установка барьеров:

Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть изготовлены из изолирующего материала.

Размещение токоведущих частей вне зоны досягаемости:

Эта мера применяется для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ при невозможности сооружения ограждений, оболочек и барьеров. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.

Установка барьеров и размещение токоведущих частей вне зоны досягаемости допускаются только в помещениях, доступных квалифицированному персоналу.

Сверхнизкое (малое) напряжение (СНН):

СНН применяется для защиты от поражения электрическим током при прямом и/или косвенном прикосновениях в электроустановках напряжением до 1 кВ в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания (см. ниже). Суть этой меры защиты заключается в обеспечении наименьшей вероятности поражения человека электрическим током за счёт применения малой величины напряжения питания электроустановок.

При этом величина такого напряжения составляет: не > 25В переменного и не > 60 В постоянного тока – в помещениях с повышенной опасностью; не > 12В переменного и не > 30 В постоянного тока – в особо опасных помещениях и в наружных электроустановках.

Защита от косвенного прикосновения

Защитное заземление:

Защитное заземление представляет собой преднамеренное электрическое соединение с землёй нетоковедущих проводящих (электропроводных) частей электрооборудования, которые в результате нарушения изоляции могут оказаться под напряжением. Такой частью электрооборудования, как правило, является его металлический корпус.

Принцип защитного действия защитного заземления можно объяснить следующим образом: при параллельном включении в электрическую цепь «аварийный корпус – заземление» сопротивлений заземляющего устройства и человека ток по ним по закону Кирхгоффа для разветвлённых электрических цепей распределяется обратно пропорционально величинам сопротивлений, оставаясь практически неизменным в сумме.

Подбор величины сопротивления заземляющего устройства, при которой сила тока, протекающего через человека, будет равна или меньше безопасных значений обеспечит его защиту от поражения. Наибольшая величина сопротивления заземляющего устройства, при которой обеспечивается указанное выше условие, называется допустимым сопротивлением защитного заземления.

Защитное заземление эффективно только в том случае, когда ток замыкания на землю не увеличивается с уменьшением сопротивления заземляющего устройства. Поэтому защитное заземление применяется в качестве основной меры защиты в электросетях с изолированной нейтралью, т.к. только в них при глухом замыкании на землю любого из фазных проводов ток замыкания не зависит от сопротивления заземления.

Конструктивно заземляющее устройство состоит из заземлителей, размещённых в грунте (земле), заземляющего проводника и заземляющей шины (последние расположены вне грунта и служат для подключения заземлителей к электрооборудованию).

Варианты конструкций, схемы размещения в грунте, материалы для изготовления конструктивных элементов, способы расчёта и др. сведения о заземляющих устройствах рассматриваются на лабораторных и практических занятиях.

Согласно требованиям ПУЭ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе IT напряжением до 1 кВ, должно соответствовать условию:

R зу £ U пр /I зм, (22)

где R зу – сопротивление заземляющего устройства, Ом;

U пр – напряжение прикосновения, значение которого принимается равным 50 В;

I зм – полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается принимать сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность источника тока не превышает 100 кВ×А.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей.

Автоматическое отключение питания:

Автоматическое отключение питания применяется для быстрого отключения энергоисточника от аварийного электрооборудования. При этом время отключения не должно превышать нормированные значения (табл. 1,2), т.к. в противном случае человек, касающийся в этот момент электроустановки, получит опасную дозу электрической энергии. При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ открытые проводящие части присоединяются к глухозаземлённой нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или ТТ.

В электроустановках, в которых в качестве защитной меры применено автоматическое отключение питания, должно быть выполнено уравнивание потенциалов (см. ниже).

Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты и устройства защитного отключения (УЗО).

Таблица 1

Наибольшее допустимое время защитного автоматического отключения для системы TN

Таблица 2

Наибольшее допустимое время защитного автоматического отключения для системы IT

Уравнивание потенциалов:

Система уравнивания потенциалов предназначена для ликвидации разности потенциалов между любыми точками открытых проводящих частей электроустановок, здания, инженерных коммуникаций и т.п.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

нулевой защитный РЕ- или РЕN-проводник питающей линии в системе TN;

заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и ТТ;

заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);

металлические трубы коммуникаций, входящих в здание (горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.);

металлические части каркаса здания;

металлические части централизованных систем вентиляции и кондиционирования;

заземляющее устройство системы молниезащиты;

заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

металлические оболочки телекоммуникационных кабелей.

Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток.

Для уравнивания потенциалов могут быть использованы специально предусмотренные проводники либо открытые и сторонние проводящие части, если они удовлетворяют требованиям к защитным проводникам в отношении проводимости и непрерывности электрической цепи.

Выравнивание потенциалов:

Система выравнивания потенциалов предназначена для снижения разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путём применения специальных проводящих покрытий земли.

Двойная или усиленная изоляция:

Защита при помощи двойной или усиленной изоляции может быть обеспечена применением электрооборудования класса II (табл. 3) или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку.

Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

Защитное электрическое разделение цепей:

Защитное электрическое разделение цепей предназначено для уменьшения опасности однофазного прикосновения в разветвлённых электросетях большой протяжённости, имеющих большую электрическую ёмкость и малое сопротивление изоляции проводов относительно земли.

Защитное электрическое разделение цепей источника тока и электроприёмника осуществляется при помощи разделительного трансформатора и применяется, как правило, для одной питающей цепи, которая при этом имеет малую электрическую ёмкость, большое сопротивление изоляции проводов относительно земли, а, следовательно, меньшую опасность при однофазном прикосновении.


Таблица 3

Классификация по способу защиты человека от поражения электрическим током и условия применения электрооборудования в электроустановках напряжением до 1 кВ

Класс по ГОСТ 12.2.007.0 Р МЭК536 Маркировка Назначение защиты Условия применения электрооборудования в электроустановке
Класс 0 - При косвенном прикосновении 1. Применение в непроводящих помещениях. 2. Питание от вторичной обмотки разделительного трансформатора только одного электроприёмника
Класс I Защитный зажим, знак или буквы РЕ, или желто-зелёные полосы При косвенном прикосновении Присоединение заземляющего зажима электрооборудования к защитному проводнику электроустановки
Класс II Знак При косвенном прикосновении Независимо от мер защиты, принятых в электроустановке
Класс III Знак От прямого и косвенного прикосновений Питание от безопасного разделительного трансформатора

Изолирующие (непроводящие) помещения, зоны, площадки:

Изолирующие (непроводящие) помещения, зоны и площадки применяются в электроустановках напряжением до 1 кВ, когда требования к автоматическому отключению питания не могут быть выполнены, а применение других защитных мер невозможно либо нецелесообразно.

Сопротивление относительно земли изолирующего пола и стен таких помещений, зон и площадок в любой точке должно быть не менее:

50 кОм при номинальном напряжении электроустановки до 500 В включительно;

100 кОм при номинальном напряжении электроустановки более 500 В;

Если сопротивление в какой-либо точке меньше указанных величин, такие помещения, зоны, площадки не должны рассматриваться в качестве меры защиты от поражения электрическим током.

Для изолирующих (непроводящих) помещений, зон, площадок допускается использование электрооборудования класса 0 (табл.3) при соблюдении одного из следующих условий:

открытые проводящие части удалены одна от другой и от сторонних проводящих частей не менее чем на 2 м.

открытые проводящие части отделены от сторонних проводящих частей барьерами из изоляционного материала;

сторонние проводящие части покрыты изоляцией, выдерживающей испытательное напряжение не менее 2 кВ в течение 1 мин.

Пол и стены таких помещений не должны подвергаться воздействию влаги.

Кроме рассмотренных основных способов защиты персонала от поражения электрическим током используются: защитное зануление; блокировка; предупредительная сигнализация; электрозащитные средства (изолирующие штанги, диэлектрические коврики и др.).

При технической эксплуатации электрооборудования промышленных предприятий электротравмы могут возникать по следующим причинам:

Прикосновение непосредственной к токоведущим частям электроустановок, действующих под напряжением. Это может произойти из-за неисправности ограждающих устройств электроустановок, ошибочные действия персонала, когда работы выполняются вблизи или непосредственно на токопроводящих элементах, находящихся под напряжением, а также при появлении напряжения (в результате ошибочной подачи) на ранее отключенных электроустановках и участках сети;

Тяжелые и смертельные несчастные случаи (более 200), проанализированы В.Е.Манойловим, показали, что на случайное прикосновение, не вызываемый производственной необходимостью и ошибочной подачей напряжения, в процессе ремонтов и осмотров электроустановок, приходится около 53% всех электротравм;

Прикосновение к металлическим конструктивных частей электроустановок, которые не должны находиться под напряжением, но на корпусах, кожухах и ограждающих устройств может появиться напряжение в результате электрического пробоя или естественного старения изоляции электроустановок, а также при замыкании оголенных проводов из-за обрыва и падения на конструктивные части электроустановок и при отсутствии защитного заземления, эти причины составляют около 22% всех травм;

Прикосновение инструментом и предметами, имеющими малое сопротивление, к изоляции, к токоведущим частям, а также к неметаллических частей электроустановок, оказавшимся под напряжением из-за заводские дефекты в конструкции, при монтаже и изготовления. На эти причины приходится 14% электротравм;

Прикосновение к стенам, полам, строительных конструкций, оказались под шаговое напряжение. Шаговое напряжение возникает при растекании электрического тока от трубопроводов, строительных конструкций, рельсовых путей, на которые перешел электрический ток в результате падения проводов или ухудшения изоляции. Такие причины составляют 2-3%;

Действие дуги при операциях с видмикальнимы устройствами и другие причины. Они составляют около 6%.

Просмотр электротравм, проведенный В.Е.Манойловим, показал, что электротравмы из-за ошибочной подачи напряжения на электроустановки при их ремонтов и осмотров обусловлены неудовлетворительной организацией ремонтных работ, недостаточным знанием работниками правил по технике безопасности.

Очень большой процент электротравм при случайном прикосновении, не вызвано производственной необходимостью (до 30%), и небольшой -при соприкосновения в процессе работы (до 2%) позволяет сделать вывод, что работники, не связанные с эксплуатацией электроустановок, не знают, какую опасность представляет электрический ток для человека.

В ДСТУ 2843-94 "Электротехника. Основные понятия. Термины и определения" установлены термины и определения основных понятий электробезопасности.

Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Электротравма - травма, вызванная воздействием электрического тока или электрической дуги.

Электротравматизм - явление, характеризующееся совокупностью электротравм.

Электрическое замыкание на корпус - случайное электрическое соединение токопроводящей части с металлическими НЕ токоведущими частями электроустановок.

Электрическое замыкание на землю - случайное электрическое соединение токоведущей части непосредственно с землей или никак токопроводящими ведущими конструкциями, или предметами, не изолированы от земли.

Ток замыкания на землю - ток, проходящий через место замыкания на землю.

Зона растекания тока замыкания на землю - зона земли, за пределами которой электрический потенциал, обусловленный токами замыкания на землю, может быть условно принят равным нулю.

Напряжение относительно земли - напряжение относительно места земли, находящейся вне зоны растекания тока замыкания на землю.

Электрический ток не оказывается органами чувств человека. Поражение человека электрическим током опасно потому, что электрический ток может возникнуть неожиданно на металлических нетоковедущих частях электроустановок, аппаратов, механизмов, а также на поверхности земли, когда человек не применяет средств защиты.

Поражение электрическим током относятся к опасным факторам, отражаются на всем организме. Однако все электротравмы условно разделяют на два основных вида: местные электротравмы, когда возникает местное поражение организма, электрический ожог, электрические знаки, металлизация кожи, общие электротравмы, когда поражается весь организм человека из-за нарушения нервной системы, нормальной деятельности жизненно важных органов и систем - электрический удар.

Электрический ожог - наиболее распространенная электротравма. Это токовый ожог в сетях до 2 кВ и ожог дугой. Температура дуги может быть до 3500 ° С. Дуга может возникать при случайных коротких замыканиях в электроустановках до 6 кВ при проведении работ под напряжением, на щитах и сборках, измерения переносными приборами и др. В сетях с напряжением выше 10 кВ дуга может возникать при приближении человека к токоведущим частям, находящимся под напряжением.

Электрические знаки - это пятна серого или бледно-желтого цвета. Конфигурация электрического знака соответствует форме токопроводящей части, к которой прикоснулся человек. Такие поражения в большинстве случаев безболезненные.

Металлизация кожи является следствием проникновения вглубь кожи паров металла, когда участок тела находится вблизи от места образования электрической дуги. Такое поражение возможно при отключении открытых рубильников и при коротких замыканиях.

Болезненное ощущение ожога и присутствие инородного тела исчезает с отмиранием поврежденной кожи.

Электрический удар. Сущность его заключается в том, что ток, протекая по всему телу человека, раздражает многочисленные периферические нервные окончания, расположенные как на поверхности тела, так и на поверхности его внутренних органов, так сильно, что в организме наступает после этого торможения координированной работы нервной системы. Результатом этого раздражения и последующего торможения является паралич сердечной деятельности, дыхания и электрический шок

Паралич сердечной деятельности. Деятельность сердца может быть парализована как при непосредственном действии электрического тока, проходящего через область сердца - первичная фибрилляция, так и через рефлекторный спазм артерий - вторичная фибрилляция. Фибрилляция сердца вызывает нарушение кровообращения и если не принять соответствующие меры, восстанавливающие сердечную деятельность, то наступает смерть человека. Фибрилляция сердца - некоординированы хаотичные подергивания многочисленных волокон сердечной мышцы, при которых "насосная" функция его прекращается.

Паралич дыхания. Паралич дыхания является следствием воздействия электрического тока на мышцы грудной клетки, обеспечивающие процесс дыхания. Затруднение дыхания человек начинает ощущать уже при 20-25 мА переменного тока, усиливается с ростом значения тока. При длительном воздействии такого тока наступает асфиксия -удушення-за недостатка кислорода и избыток углекислоты в организме человека.

Электрический шок. Это нервно-рефлекторная реакция организма, сопровождающаяся расстройством дыхания, кровообращения, обмена веществ и ин.ш.

Степень опасности воздействия электрического тока зависит от:

Силы электрического тока, протекающего через человека;

Рода и частоты тока;

Пути протекания электрического тока через тело человека;

Длительности воздействия тока на человека;

Индивидуальных особенностей человека;

Условий внешней среды, в которой работает человек.

Сила электрического тока, протекающего через человека, является основным фактором, определяющим исход поражения электрическим током. Значение напряжения, под которой оказался человек, и сопротивление ее тела влияют на исход поражения человека только в той мере, в которой напряжение и сопротивление человека определяют значение электрического тока, протекающего через человека.

Если увеличивается сила электрического тока, опасность поражения человека тоже увеличивается. Различают несколько состояний человека, возникающих при определенных значениях тока.

Ощутимый ток - электрический ток силой от 0,6 до 1,5 мА, что вызывает при прохождении через организм ощутимое раздражение.

Ток, не отпускает - электрический ток, вызывает при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажата токопроводящая часть. При токе 3-5 мА (50 Гц) раздражается вся кисть руки, которая касается токоведущих частей, при 8-10 мА боль охватывает всю руку, а при 15 мА судороги мышц рук становятся непреодолимыми, а боль невыносимой. Человек при этом не может разжать руку, в которой зажата токопроводящая часть.

Предельный фибриляцийний ток - наименьшее значение фибриляцийного тока. Значение его лежит в пределах от 100 мА до 5 А для тока 50 Гц и от 300 мА до 5 А для постоянного тока.

Постоянный и переменный ток более 5 А обусловливают мгновенную остановку сердца, минуя состояние фибрилляции. Рядом с остановкой сердца происходит прекращение дыхания, даже после кратковременного воздействия следует восстанавливать путем искусственного дыхания. Длительное воздействие больших токов, кроме того, вызывает ожоги тела, разрушение внутренней структуры ткани организма, поражение отдельных органов, приводящие к смертельному исходу.

Сопротивление тела человека состоит из электрического сопротивления различных тканей тела, которые имеют разные значения. Удельное объемное сопротивление (Ом-м), например, при переменном токе 50 Гц составляет:

Сухой кожи - от 3-10 3 до 2-10 4;

Костей от 1-10 4 до 2 10 шесть;

Жировой ткани - от 30 до 60;

Мышечной ткани - от 1,5 до 3;

Крови - от 1 до 2;

Спинномозговой жидкости - от 0,5 до 0,6.

Кожа имеет наибольший удельный сопротивление, что, главным образом, и определяет электрическое сопротивление тела человека. Кожа человека имеет два основных слоя: наружный - эпидермис и внутренний - дерма. Внешний слой кожи состоит из рогового и росткового слоев. Роговой слой кожи представляет собой несколько десятков слоев ороговевших клеток, имеющих чешуйчатую строение и плотно прилегают друг к другу. В этом слое форуме кровеносных сосудов и нервов. Толщина рогового слоя на отдельных участках тела может достигать 0,2 мм и более. На ладонях и подошвах, подвергающихся механическим воздействиям, толщина этого слоя наибольшая. Роговой слой наиболее прочный в сухом состоянии его удельное электрическое сопротивление 10 пять -10 6 Ом-м.

Измерен между двумя электродами, наложенными на поверхность тела при напряжении до 15-20 В, сопротивление тела человека может составлять 3-10 3 1-10 5 Ом. Если на этом участке удалить (соскрести) только роговой слой кожи, то сопротивление уменьшится до 1-10 3 -5-10 3 Ом, а если весь внешний слой кожи (эпидермис) - то до 500-700 Ом. Электрическое сопротивление тканей под кожей человека при вполне удаленной коже примерно 300-500 Ом.

Таким образом, из этого можно сделать вывод, что электрическое сопротивление тела человека при включении ее в цепь тока состоит из трех последовательно включенных сопротивлений (рис.12.1), два из которых - сопротивление наружного слоя кожи (эпидермиса) Z е и внутреннего сопротивления тканей тела и? . В свою очередь, сопротивление эпидермиса Z е состоит из активной и? Е и емкостной составляющих С является, включенных параллельно. Обкладками конденсатора С является является электрод прикасается к поверхности кожи, с одной стороны, и хорошо проводящие ткани, лежащие под наружным слоем кожи, с другой, а диэлектриком между ними есть слой эпидермиса.

Если кожа увлажнена, то она в полтора-два раза меньшее сопротивление, чем сухая, так как влага растворяет на поверхности кожи соли и кислоты, выделяемых из организма с потом и тогда сопротивление кожи будет меньше. Длительное увлажнение делает роговой слой кожи, в результате его насыщения влагой, почти целиком ведущим. Таким образом, потоотделение и загрязнения кожи делают кожу человека электропроводной, и, следовательно, защитная функция рогового слоя кожи, как диэлектрика, в таких условиях теряется. Поражение электрическим током в таких условиях увеличивается, так как при прочих равных условиях электрический ток, протекающий через человека, растет и растет опасность человека.

Сопротивление тела человека может резко изменяться и зависит от места соприкосновения электрического провода к телу, величины тока, протекающего по телу, приложенного напряжения, рода и частоты тока, площади прикосновения к токопроводящей части, длительности протекания электрического тока.

Электрическое сопротивление тела человека зависит от прикосновения к токопроводящей части, потому что, во-первых, меняется длина пути прохождения электрического тока, во-вторых, из-за разной толщины рогового слоя кожи, в-третьих, из-за неравномерности распределения потовых желез по поверхности тела.

Наименьшее сопротивление имеет кожа лица, шея, паховые впадины, руки на участке выше ладоней с внутренней стороны и тыльной стороны кисти руки. Больше электрический ток у человека вызывает быструю рефлекторную реакцию организма, что проявляется в повышенном потоотделении в месте соприкосновения токопроводящей части, что, в свою очередь, способствует снижению сопротивления кожи в месте соприкосновения, росту тока и опасности человека.

Более повышенное напряжение, в цепи которой оказывается человек, вызывает уменьшение сопротивления в десятки раз, что в сети может составлять 300 Ом. Объясняется это пробоем рогового слоя может возникать даже при напряжении около 50 В.

Постоянному току сопротивление тела человека больше, чем переменном электрическом тока любой частоты. С ростом частоты полное сопротивление тела человека уменьшается, так как уменьшается емкостная составляющая полного сопротивления. В принципе, если частота возрастает до бесконечности, то полное сопротивление тела человека стремится к внутреннему сопротивлению тела. Большая площадь токоведущей части, к которой прикасается человек, уменьшает полное сопротивление тела человека.

Если протекание тока через человека длительное, то оно способствует снижению полного сопротивления тела человека, вследствие повышенного кровоснабжения и, следовательно, повышенного потоотделения. При напряжениях 2 030 В за 1-2 мин. сопротивление может снижаться в среднем на 25%.

Сопротивление тела человека (электрический) зависит от физиологических факторов и окружающей среды. Сопротивление тела у женщин меньше, чем у мужчин, у детей меньше, чем у взрослых. Неожиданные звуковые и световые раздражители, а также болезненные уколы и удары способны вызвать снижение сопротивления тела человека на 20-50% в течение нескольких минут. В закрытых помещениях, где парциальное давление кислорода меньше, сопротивление тела человека уменьшается, а, следовательно, опасность поражения увеличивается.

Род и частота электрического тока влияют на исход поражения человека. Опыт показывает, что переменный ток 50 Гц в большей степени раздражает организм человека, чем равный ему постоянный. Однако это имеет место лишь при напряжениях до 300 В. Считается, что при напряжениях выше 300 В опасность постоянного тока преобладает над переменным током 50 Гц.

Если частота электрического тока увеличивается от 0 до 50 Гц опасность поражения увеличивается, поскольку растет ток через человека через емкостную составляющую сопротивления тела человека. Однако при дальнейшем увеличении частоты тока, действует на человека, наблюдается снижение опасного воздействия электрического тока, в частности электрического удара, опасность которого полностью отсутствует при частоте близкой к 10 кГц.

При частотах 10 кГц и выше существует только опасность ожога при прикосновении к токоведущим частям.

Путь электрическому току, протекающего через человека, играет значительную роль при поражении, так как на его пути могут оказаться жизненно важные органы тела человека - сердце, легкие, головной мозг и др.

Наиболее опасными путями, именуемых петлями тока, являются петли голова - руки и голова - ноги, когда ток может проходить через головной и спинной мозг. Эти петли в практике эксплуатации электроустановок встречаются редко.

Большую опасность представляет прикосновение человека к токоведущим частям электроустановок уязвимыми рефлексогенными зонами - виски, шея, грудь, который может привести к поражению электрическим током.

Продолжительность воздействия электрического тока в значительной степени определяет результат поражения, так как с увеличением времени воздействия величина тока через тело человека растет, затем снижается защитная функция организма, а также повышается вероятность воздействия тока на мышцу сердца, когда он находится в наиболее уязвимом состоянии.

Мышцу сердца в различные фазы его деятельности 1-1,5 с неодинаково чувствителен к электрическому току. Считается, что наиболее уязвимой является фаза, которая длится порядка 0,2 с - период, когда заканчивается сокращения желудочков сердца, и мышца его переходит в расслабленное состояние.

Если во время этой фазы через сердце проходит электрический ток, то при некоторых его значениях может возникать фибрилляция сердца.

Поэтому, чем меньше длительность протекания тока через организм человека, тем меньше вероятность его влияния на мышцу сердца в трудной фазе. Иными словами, при продолжительности воздействия тока на человека, равный продолжительности кардиоциклах 0,75-1 с, опасность возникновения фибрилляции сердца велика. При длительности воздействия электрического тока 0,2 с и менее, опасность возникновения фибрилляции мала, а, следовательно, опасность поражения током человека резко уменьшается.

Индивидуальные особенности организма. Человек, страдающий заболеваниями сердечно-сосудистой системы или органов внутренней секреции и нервной системы, больше подвержена воздействию электрического тока, чем здоровые.

В то время как человек в сосредоточенном состоянии, например, подготовлена к возможности воздействия электрического тока, то она меньше подвергается опасности воздействия тока, при прочих равных условиях.

Условия внешней среды определяют результат поражения в той мере, в какой они способствуют снижению значение электрического тока, протекающего через человека, и ограничивающие факторы, которые снижают электрическое сопротивление организма.

Согласно требованиям нормативных документов, безопасность электроустановок обеспечивается следующими основными мерами:

  • 1) недоступностью токоведущих частей;
  • 2) надлежащей, а в отдельных случаях повышенной (двойной) изоляцией;
  • 3) заземлением или занулением корпусов электрооборудования и элементов электроустановок, могущих оказаться под напряжением;
  • 4) надежным и быстродействующим автоматическим защитным отключением;
  • 5) применением пониженных напряжений (42 В и ниже) для питания переносных токоприемников;
  • 6) защитным разделением цепей;
  • 7) блокировкой, предупредительной сигнализацией, надписями и плакатами;
  • 8) применением защитных средств и приспособлений;
  • 9) проведением планово-предупредительных ремонтов и профилактических испытаний электрооборудования, аппаратов и сетей, находящихся в эксплуатации;
  • 10) проведением ряда организационных мероприятий (специальное обучение, аттестация и переаттестация лиц электротехнического персонала, инструктажи и т.д.).

Для обеспечения электробезопасности на предприятиях мясной и молочной промышленности применяют следующие технические способы и средства защиты: защитное заземление, зануление, применение малых напряжений, контроль изоляции обмоток, средства индивидуальной защиты и предохранительные приспособления, защитные отключающие устройства.

Защитное заземление - это преднамеренное электрическое соединение с зёмлёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно защищает от поражения электрическим током при прикосновении к металлическим корпусам оборудования, металлическим конструкциям электроустановки, которые вследствие нарушения электрической изоляции оказываются под напряжением.

Сущность защиты заключается в том, что при замыкании ток проходит по обеим параллельным ветвям и распределяется между ними обратно пропорционально их сопротивлениям. Поскольку сопротивление цепи «человек-земля» во много раз больше сопротивления цепи «корпус-земля», сила тока, проходящего через человека, снижается.

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают выносные и контурные заземляющие устройства.

Выносные заземлители располагают на некотором расстоянии от оборудования, при этом заземлённые корпуса электроустановок находятся на земле с нулевым потенциалом, а человек, касаясь корпуса, оказывается под полным напряжением заземлителя.

Контурные заземлители располагают по контуру вокруг оборудования в непосредственной близости, поэтому оборудование находится в зоне растекания тока. В этом случае при замыкании на корпус потенциал грунта на территории электроустановки (например, подстанции) приобретает значения, близкие к потенциалу заземлителя и заземленного электрооборудования, и напряжение прикосновения снижается.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. При таком электрическом соединении, если оно надежно выполнено, всякое замыкание на корпус превращается в однофазное короткое замыкание (т.е. замыкание между фазами и нулевым проводом). При этом возникает ток такой силы, при которой обеспечивается срабатывание защиты (предохранителя или автомата) и автоматическое отключение поврежденной установки от питающей сети.

Малое напряжение - напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Малые напряжения переменного тока получают с помощью понижающих трансформаторов. Его применяют при работе с переносным электроинструментом, при использовании переносных светильников во время монтажа, демонтажа и ремонта оборудования, а также в схемах дистанционного управления.

Изолирование рабочего места - это комплекс мероприятий по предотвращению возникновения цепи тока человек-земля и увеличению значения переходного сопротивления в этой цепи. Данная мера защиты применяется в случаях повышенной опасности поражения электрическим током и обычно в комбинации с разделительным трансформатором.

Выделяют следующие виды изоляции:

  • · рабочая - электрическая изоляция токоведущих частей электроустановки, обеспечивающая её нормальную работу и защиту от поражения электрическим током;
  • · дополнительная - электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;
  • · двойная - электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Двойная изоляция заключается в одном электроприёмнике двух независимых одна от другой ступеней изоляции (например, покрытие электрооборудования слоем изоляционного материала - краской, пленкой, лаком, эмалью и т.п.). Применение двойной изоляции наиболее рационально, когда в дополнение к рабочей электрической изоляции токоведущих частей корпус электроприёмника изготавливается из изолирующего материала (пластмассы, стекловолокна).

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током.

Оно должно обеспечить автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, не допустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения. электробезопасность ток помощь ожог

Защитное отключение рекомендуется в качестве основной или дополнительной меры защиты, если безопасность нельзя обеспечить при заземлении или занулении, либо если заземление или зануление трудно выполнимо, либо нецелесообразно по экономическим соображениям. Устройства (аппараты) для защитного отключения в отношении надежности действия должны удовлетворять специальным техническим требованиям.

Средства индивидуальной защиты делятся на изолирующие, вспомогательные и ограждающие.

Изолирующие защитные средства обеспечивают электрическую изоляцию человека от токоведущих частей и земли. Они подразделяются на основные (диэлектрические перчатки, инструмент с изолированными рукоятками) и дополнительные (диэлектрические галоши, коврики, подставки)

К вспомогательным можно отнести очки, противогазы, маски, предназначенные для защиты от световых, тепловых и механических воздействий.

К ограждающим относятся переносные щиты, клетки, изолирующие подкладки, переносные заземления и плакаты. Они предназначены в основном для временного ограждения токоведущих частей, к которым возможно прикосновение работающих.

© 2024 softlot.ru
Строительный портал SoftLot