Заземление и зануление. Их защитное действие

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото – схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Рисунок TN-C

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.

Фото – вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.


Фото – переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.


Фото – схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото – принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).


Фото – отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно состоит (рис. 24.6) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью (так называемая система IT), а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки. При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза С – корпус электроустановки 1 – человек – земля – емкостные Х A, X B) и активные R A, R B сопротивления связи проводов с землей, фазы А и В. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она возникает за счет несовершенства изоляции проводов, опор и т.п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

Рис. 24.6. Схема защитного заземления (система IT):

1 – электроустановка; 2 – заземляющий проводник; 3 – заземлитель

При наличии заземляющего устройства образуется дополнительная цепь: фаза С – корпус электроустановки – заземляющее устройство – земля – сопротивления Х А, R A, Х B, R B фазы A и В. В результате ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно не должно превышать 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды длиной 2,5-3,0 м, забитые вертикально в землю с расстоянием друг от друга 2,5-3,0 м или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб, угловой стали, швеллеров с толщиной стенок не менее 4 мм. Более тонкие профили вследствие коррозии быстро выходят из строя.

Вертикальные электроды в групповом заземлителе соединяют между собой с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом. При мощности генераторов и трансформаторов, питающих сеть, 100 кВ А и менее допускается сопротивление заземлителей не более 10 Ом. Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемого расчетом. Для глинистых, влажных почв обычно бывает достаточно двух-трех электродов, на сухих песчаных или каменистых участках этого может не хватить.

Сопротивление заземляющего устройства – это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Различают выносное и контурное заземляющие устройства. Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением. Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Зануление – это преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных или пятипроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В (так называемая система TN) зануление – основное средство защиты. Заземление в таких сетях неэффективно.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ- проводника). Его нельзя путать с нулевым рабочим проводом (N-проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник РЕ прокладывают по трассе фазных проводов, в непосредственной близости от них. Систему, где присутствуют нулевой рабочий провод N и нулевой защитный проводник РЕ, и они разделены на всем протяжении трассы, называют системой TN-S. Буква S означает разделение указанных проводников на всем их протяжении.

В качестве нулевого защитного проводника в сетях до 1000 В в первую очередь рекомендуется использовать нулевой рабочий проводник (кроме специально оговоренных случаев), к которым подсоединяют корпуса электроустановок. В этом случае его называют совмещенным нулевым защитным и нулевым рабочим проводником (PEN-проводником), а саму систему – системой TN-С. Это система TN , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 24.7).

Если же функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике только в какой-то ее части, начиная от источника питания, а далее они идут раздельно (первый из них служит для защиты электроустановок, а второй – для питания однофазных электроустановок), то такую систему называют системой TN-C-S.

Согласно требованиям ПУЭ снова объединять эти разделенные проводники уже нельзя.

Рис. 24.7. Схема зануления (система TN-C ):

1 – заземлитель нейтрали трансформатора; 2 – источник тока (трансформатор); 3 – нейтраль источника тока; 4 – зануление корпуса трансформатора; 5 – нулевой рабочий (он же и нулевой защитный) провод сети; 6" – нулевой защитный провод электроустановки; 7 – предохранитель; 8 – электроустановка; 9 – повторное заземление нулевого защитного провода сети; L 2, L 3 – фазные провода; PEN – нулевой рабочий проводник и нулевой защитный проводник, совмещенные в одном

Согласно ПУЭ не допускается использовать в качестве РЕ проводников:

  • металлические оболочки изоляционных трубок и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а так же свинцовые оболочки проводов и кабелей;
  • трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления;
  • водопроводные трубы при наличии в них изолирующих вставок.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети. Работает зануление следующим образом. При попадании напряжения на корпус зануленной электроустановки 8 (рис. 24.7) бо́льшая часть тока с него пойдет в сеть через нулевой защитный провод 6. Через тело человека по цепи: корпус электроустановки 8 – человек – земля – заземляющее устройство 9 – нулевой рабочий провод 5 пойдет незначительный ток, не вызывающий его поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6). Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2–7 с срабатывает токовая защита (перегорает предохранитель 7, выключается автоматический выключатель и т.п.) и электроустановка, а вместе с ней и человек, полностью обесточиваются. Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, так как сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а допустимое сопротивление заземлителя – 4 Ом.

В запуленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, не менее чем в три раза превышающий номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза – для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза – с величиной тока более 100 А.

Нулевой защитный провод 5 сети должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника. Поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты. Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В. Сопротивление каждого повторного заземлителя в отдельности должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

В сети, где применяют зануление, нельзя заземлять корпуса электроустановок без их зануления, так как в случае замыкания фазы на корпус заземленной, но не зануленной электроустановки иод напряжением окажутся все корпуса других зануленных электроустановок. В то же время дополнительное заземление зануленных электроустановок весьма полезно. Оно повышает надежность заземления нулевого провода.

Если в помещении находится несколько электроустановок, то каждую из них заземляют или зануляют, подсоединяя к магистрали заземления (зануления), представляющей собой металлический проводник сечением не менее 100 мм2 (например, стальная полоса 40 х 4 мм), укрепленный по периметру помещения. Магистраль соединяют с заземлителем, или с нулевым защитным проводником (в зависимости от принятой системы защиты), или с тем и другим одновременно.

Последовательное заземление или зануление электроустановок (одна от другой) не разрешается (рис. 24.8).

Заземлители с магистралью зануления заземления соединяют не менее чем двумя проводниками, подсоединяя их к заземлителю в разных местах.

Присоединение заземляющих проводников к заземлителю и заземляющим конструкциям выполняют сваркой, а к главному заземляющему зажиму, корпусам аппаратов, машин и опорам ЛЭП – болтовым соединением (для обеспечения возможности производства измерений) с принятием мер против ослабления контакта и его коррозии.

Рис. 24.8.

1, 4, 5 и 6 – правильное зануление электроустановки; 2 и 3 – неправильное зануление электроустановки; 7 – магистраль заземления (зануления)

Для обеспечения надежной защиты сечения всех защитных проводников (РE-проводников) должны быть не менее приведенных в табл. 24.3 при условии выполнения их из тех же материалов, что и фазные проводники.

Таблица 24.3

Наименьшие площади поперечного сечения защитных проводников РЕ

Сечение фазных проводников, мм2

Наименьшее сечение защитных проводников (РЕ-проводннков), мм2

16 < 5 ≤ 35

Сечение РEN-проводника должно быть не менее 10 мм2 по меди или 16 мм2 – но алюминию.

Размеры заземлителей и заземляющих проводников, проложенных в земле, приведены в табл. 24.4.

Заземление или зануление электроустановок следует выполнять при номинальном напряжении:

  • выше 50 В переменного тока или выше 120 В постоянного тока – во всех электроустановках независимо от того, где они эксплуатируются;
  • выше 25 В переменного тока или выше 60 В постоянного тока – в помещениях с повышенной опасностью;
  • выше 12 В переменного тока или выше 30 В постоянного тока – в особо опасных помещениях и в наружных установках;
  • при любом напряжении переменного и постоянного тока – во взрывоопасных помещениях любого класса.

К частям, подлежащим занулению или заземлению, относятся: корпуса электрических машин (в том числе технологическое оборудование с электропитанием), корпуса трансформаторов, светильников, каркасы распределительных щитов, рубильников, щитов управления, металлические оболочки и броня электрических кабелей; металлические трубы, в которых проложена электропроводка; металлические корпуса передвижных и переносных электроприемников и др. (в соответствии с требованиями ПУЭ).

Зануление (заземление ) металлических корпусов переносных электроустановок осуществляют дополнительной жилой кабеля (проводником PEN в системе TN-C в системе, где нулевой рабочий и нулевой защитный проводники совмещены в одном PEN- проводнике): третьей жилой для однофазных и четвертой – для трехфазных электроприемников.

Если применяется система с разделенными нулевым рабочим (N ) и нулем защитным (РЕ) проводниками (система TN-S), то в питающем кабеле должно быть уже две дополнительные жилы: (N) и (РЕ). То же самое должно быть и в соединительной вилке, и в розетке. Жилы эти проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение защитных проводников происходило до соединения фазных проводников, а рассоединение – в обратной последовательности. Обычно это достигается применением у вилки более длинного штыря для защитного проводника (РЕ или PEN), чем для фазных проводов (рис. 24.9 и 24.10).

Если корпуса розетки или вилки выполнены из металла, то к ним также подсоединяют защитные проводники (PEN или РЕ, в зависимости от того, какая система защиты применяется). Во всех случаях вилку подсоединяют к электро- приемнику, розетку – к сети.

Таблица 24.4

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм2

Толщина стенки, мм

Стать черная

для вертикальных заземлителей

Прямоугольный

Сталь оцинкованная

для вертикальных заземлителей

для горизонтальных заземлителей

Прямоугольный

Прямоугольный

Канат многопроволочный

1,8 (диаметр каждой проволоки)

Для определения технического состояния заземляющего устройства проводят визуальные осмотры его видимой части (не реже одного раза в 6 месяцев ответственным за электрохозяйство), осмотры с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования.

Рис. 24.9. TN-C :

а – розетка; б – вилка

Рис. 24.10. Втычной соединитель (разъем) для подключения переносной электроустановки к электрической сети системы заземления TN-S:

а – розетка; б – вилка

Осмотры с выборочным вскрытием грунта проводят в местах, наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений не реже одного раза в 12 лет. При осмотре оценивают состояние контактных соединений, наличие антикоррозионного покрытия, отсутствие обрывов. Результаты осмотров заносят в паспорт заземляющего устройства установленной формы.

При вскрытии грунта производят инструментальную оценку состояния заземлителей и степени коррозии контактных соединений. Элемент заземлителя заменяют, если разрушено более 50% его сечения. Результаты осмотров оформляют актами.

При определении технического состояния заземляющего устройства производят:

  • измерение сопротивления заземляющего устройства;
  • измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения);
  • проверку наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
  • измерение токов короткого замыкания электроустановки;
  • проверку состояния пробивных предохранителей;
  • измерение удельного сопротивления грунта в районе заземляющего устройства.

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления — снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

Применяется также заземление электрооборудования, зданий и сооружений для защиты от действия атмосферного электричества.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

Заземляющее устройство

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Различают естественные и искусственные заземлители.

Для заземляющих устройств в первую очередь должны быть использованы естественные заземлители:

  • водопроводные трубы, проложенные в земле;
  • металлические конструкции зданий и сооружений, имеющие
  • надежное соединение с землей;
  • металлические оболочки кабелей (кроме алюминиевых);
  • обсадные трубы артезианских скважин.

Запрещается в качестве заземлителей использовать трубопроводы с горючими жидкостями и газами, трубы теплотрасс.

Естественные заземлители должны иметь присоединение к заземляющей сети не менее чем в двух разных местах.

В качестве искусственных заземлителей применяют:

  • стальные трубы диаметром 3-5 см, толщиной стенок 3,5 мм,
  • длиной 2-3 м;
  • полосовую сталь толщиной не менее 4 мм;
  • угловую сталь толщиной не менее 4 мм;
  • прутковую сталь диаметром не менее 10 мм, длиной до 10 м и более.

Для искусственных заземлителей в агрессивных почвах (щелочных, кислых и др.), где они подвергаются усиленной коррозии, применяют медь, омедненный или оцинкованный металл.

В качестве искусственных заземлителей нельзя применять алюминиевые оболочки кабелей, а также голые алюминиевые проводники, так как в почве они окисляются, а окись алюминия — это изолятор.

Каждый отдельный проводник, находящийся в контакте с землей, называется одиночным заземлителем , или электродом. Если заземли- тель состоит из нескольких электродов, соединенных между собой параллельно, он называется групповым заземлителем.

Для погружения в землю вертикальных электродов предварительно роют траншею глубиной 0,7-0,8 м, после чего забивают трубы или уголки с помощью механизмов. Стальные стержни диаметром 10-12 мм заглубляют в землю с помощью специального приспособления, а более длинные — с помощью вибратора. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой методом сварки.

Устройство защитного заземления может быть осуществлено двумя способами: контурным расположением заземляющих проводников и выносным.

При контурном размещении заземлителей обеспечивается выравнивание потенциалов при однофазном замыкании на землю. Кроме того, благодаря взаимному влиянию заземлителей уменьшается напряжение прикосновения и напряжение шага в защищаемой зоне. Выносные заземления этими свойствами не обладают. Зато при выносном способе размещения есть выбор места для заглубления заземлителей.

В помещениях заземляющие проводники следует располагать таким образом, чтобы они были доступны для осмотра и надежно защищены от механических повреждений. На полу помещений заземляющие проводники укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также с повышенной влажностью заземляющие проводники прокладывают вдоль стен на скобах в 10 мм от стены.

Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю.

Величина сопротивления заземлителя зависит от удельного сопротивления грунта, в котором заземлитель находится; типа размеров и расположения элементов, из которых заземлитель выполнен; количества и взаимного расположения электродов.

Величина сопротивления заземлителей может изменяться в несколько раз в зависимости от времени года. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое время.

Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

В установках свыше 1000 В допускается сопротивление заземления R 3 <= 125/I 3 Ом, но не более 4 Ом или 10 Ом.

В установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом для обеспечения автоматического отключения участка сети в случае аварии.

Зануление и защитное отключение

Зануление — это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Нулевой защитный проводник - проводник, соединяющий зануляемые части с нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление применяется в сетях напряжением до 1000 В с заземленной нейтралью. В случае пробоя фазы на металлический корпус электрооборудования возникает однофазное короткое замыкание, что приводит к быстрому срабатыванию защиты и тем самым — автоматическому отключению поврежденной установки от питающей сети. Такой защитой являются плавкие предохранители или максимальные автоматы, установленные для защиты от токов коротких замыканий; магнитные пускатели со встроенной тепловой зашитой; контакторы с тепловым реле и другие приборы.

При пробое фазы на корпус ток идет по пути «корпус — нулевой провод — обмотки трансформатора — фазный провод — предохранители». Ввиду того что сопротивление при коротком замыкании мало, сила тока достигает больших величин и предохранители срабатывают.

Назначение нулевого провода в электрической сети — обеспечить необходимую для отключения электроустановки величину тока короткого замыкания путем создания для этого тока цепи с малым сопротивлением.

Нулевой провод должен быть проложен так, чтобы исключить возможность обрыва; в нулевом проводе запрещается ставить предохранители, выключатели и другие приборы, способные нарушить его целостность. Проводимость нулевого провода должна составлять не менее 50% проводимости фазного провода. В качестве нулевых защитных проводников применяют голые или изолированные проводники, стальные полосы, алюминиевые оболочки кабелей, различные металлоконструкции зданий и др.

Контроль зануления электрооборудования производится при его приемке в эксплуатацию, а также периодически в процессе эксплуатации. Один раз в пять лет должно производиться измерение полного сопротивления петли «фаза-нуль» для наиболее удаленных, а также наиболее мощных электроприемников, но не менее 10% их общего количества.

Защитное отключение является частным случаем защитного зануления. В отличие от зануления, защитное отключение может применяться в любых сетях независимо от принятого режима нейтрали, величины напряжения и наличия в них нулевого провода.

Защитное отключение — это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется в том случае, когда трудно выполнить заземление или зануление, а также в дополнение к ним в некоторых случаях.

В зависимости оттого, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют следующие схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Защитное отключение осуществляется при помощи автоматических выключателей, снабженных специальным реле защитного отключения. Время срабатывания защитного отключения — не более 0,2 с.

Вся наша жизнь неотделима от всевозможных электрических приборов. Выход из строя любого электрооборудования – это частое и вполне нормальное явление, ни одно устройство не может работать вечно и без единого сбоя. Наша задача — обезопасить этих электрических помощников от короткого замыкания или возникающих в цепи перегрузок, а себя – от повреждения организма высоким напряжением. В первом случае на помощь приходят всевозможные защитные аппараты, а вот для защиты человека применяется заземление и зануление электроустановок. Это одна из самых сложных частей электрики, но мы попробуем разобраться, в чем же различие этих работ, и в каких случаях нужно применять те или иные защитные меры.

Если автоматы, пробки и другие защитные устройства не срабатывают на возникшую неисправность, и в результате образуется пробой внутренней изоляции, на металлическом корпусе установки возникает повышенное напряжение. Касание человеком такого прибора может привести к параличу мышц (при силе тока 20-25 мА), препятствующему самостоятельному отрыву от контакта, аритмии, нарушениям тока крови (при 50-100 мА) и даже летальному исходу.

Если части электроустановки в силу технических особенностей должны находиться под напряжением, то их обязательно ограждают в соответствии с общепринятой техникой безопасности, например, специальными кожухами, барьерами или сетчатыми заграждениями. Для того чтобы предотвратить случайное поражение током при повреждении изоляционных слоев, применяется защитное заземление и зануление. Чтобы понять, чем отличается заземление от зануления, нужно знать, что они собой представляют.

Что такое заземление

Часто начинающие электрики не совсем понимают, в чем же заключается отличие зануления от заземления. Заземление – это соединение электроустановки с землей с целью снижения напряжения прикосновения до минимума. Оно применяется только в сетях с изолированной нейтралью. В результате установки заземляющего оборудования большая часть тока, поступающая на корпус, должна уйти по заземляющей части, сопротивление которой должно быть меньше остальных участков цепи.

Но это не единственная функция заземления. Защитное заземление электроустановок еще и способствует увеличению аварийного тока замыкания, как бы это ни противоречило его назначению. При использовании заземлителя с высоким значением сопротивления ток замыкания может быть слишком мал для срабатывания защитных устройств, и установка в аварийной ситуации останется под напряжением, представляя огромную опасность для человека и животных.

Заземлитель с проводниками образует заземляющее устройство, где он, по сути, и есть проводник (группа проводников), соединяющий токопроводящие части установок с землей. По назначению эти устройства разделяются на следующие группы:

  • грозозащитные, для отвода импульсного тока молнии. Применяются для заземления молниеотводов и разрядников;
  • рабочие, для поддержания необходимого режима работы электроустановок, как в нормальных, так и в аварийных ситуациях;
  • защитные, для предотвращения повреждения живых организмов электрическим током, возникающим при пробое фазного провода на металлический корпус устройства.

Все заземлители делятся на естественные и искусственные.

  1. Естественные – это трубопроводы, металлоконструкции железобетонных сооружений, обсадные трубы и другие.
  2. Искусственные заземлители – это конструкции, сооружаемые специально для этой цели, то есть стальные стержни и полосы, уголковая сталь, некондиционные трубы и другое.

Важно: для использования в качестве естественного заземления не подходят трубопроводы горючих жидкостей и газов, трубы, покрытые антикоррозийной изоляцией, алюминиевые проводники и оболочки кабелей. Категорически запрещается использовать в качестве заземляющих проводников в жилых помещениях водопроводные и отопительные трубы.

Классификация систем заземления

В зависимости от схемы соединения и количества нулевых защитных и рабочих проводником можно выделяются следующие системы заземления электроустановок:

  • TN-C;
  • TN-C-S;

Первая буква в названии системы говорит о типе заземления источника питания:

  • I – токоведущие части полностью изолированы от земли;
  • T – нейтраль источника питания соединяется с землей.

По второй букве можно определить, каким образом заземлены открытые проводящие части электроустановки:

  • N – непосредственная связь с точкой заземления источника питания;
  • T – непосредственная связь с землей.

Буквы, стоящие сразу за N, через дефис, говорят о способе устройства защитного PE и рабочего N нулевых проводников:

  • C – функции проводников обеспечиваются одним проводником PEN;
  • S – функции проводников обеспечиваются разными проводниками.

Устаревшая система TN-C

Такое заземление электроустановок используется в трехфазных четырехпроводных и однофазных двухпроводных сетях, которые преобладают в зданиях старого образца. К сожалению, эта система, несмотря на свою простоту и доступность, не позволяет достичь высокого уровня электробезопасности и на вновь строящихся зданиях не применяется.

Для модернизации старых домов TN-C-S

Защитное заземление электроустановок такого типа используется преимущественно в реконструируемых сетях, где рабочий и защитный проводники объединены во вводном устройстве схемы. Другими словами, эта система используется в том случае, если в старом здании, где эксплуатируется заземление типа TN-C, планируется расположить компьютерную технику или другие телекоммуникации, то есть для осуществления перехода к системе TN-S. Эта относительно недорогая схема отличается высоким уровнем безопасности.

Система TN-C-S позволяет перейти от устаревшей TN-C к TN-S

Специфика системы TN-S

Такая система отличается расположением нулевого и рабочего проводников. Здесь они прокладываются отдельно, причем нулевой защитный проводник PE соединяет сразу все токопроводящие части электроустановки. Чтобы избежать повторного заземления, достаточно устроить трансформаторную подстанцию, имеющую основное заземление. К тому же такая подстанция позволяет добиться минимальной длины проводника от входа кабеля в электроустановку до заземляющего устройства.

1. Заземлитель;
2. Токопроводящие части установки.

Система TT, особенности

Система, где все токоведущие открытые части непосредственно связаны с землей, причем заземлители электроустановки не имеют электрической зависимости от заземлителя нейтрали подстанции, получила название TT.

Система заземления TT отличается наличием заземлителей на каждую токопроводящую часть установки

Характерные отличия системы IT

Отличием этой системы является изоляция нейтрали источника питания от земли или ее заземление через устройства с большим сопротивлением. Такой способ позволяет максимально снизить ток утечки на корпус или в землю, поэтому его лучше использовать в зданиях, где установлены жесткие требования по электробезопасности.

Что такое зануление

Зануление – это соединение металлических частей, не находящихся под напряжением, либо с заземленной нейтралью понижающего источника трехфазного тока, либо с заземленным выводом генератора однофазного тока. Используется для того, чтобы при пробое изоляции и попадании тока на любую нетоковедущую часть устройства, происходило короткое замыкание, приводящее к быстрому срабатыванию автоматического выключателя, перегоранию плавких предохранителей или реакции прочих систем защиты. В основном применяется в электроустановках с глухозаземленной нейтралью.

Принципиальная схема зануления электроустановок

Дополнительная установка УЗО в линию приведет к его срабатыванию в результате разности сил тока в фазном и нулевом рабочем проводе. Если будут установлены и УЗО, и автоматический выключатель, то пробой приведет к срабатыванию либо обоих устройств, либо к включению более быстродействующего элемента.

Важно: При установке зануления необходимо учитывать, что ток короткого замыкания обязательно должен достигать значения плавления вставки предохранителя или отключения автоматического выключателя, иначе свободное протекание тока замыкания по цепи приведет к возникновению напряжения на всех зануленных корпусах, а не только на поврежденном участке. Причем значение этого напряжения будет равно произведению сопротивления нулевого проводника на ток замыкания, а значит чрезвычайно опасным для человеческой жизни.

За исправностью нулевого провода необходимо следить самым тщательным образом. Его обрыв приводит к появлению напряжения на всех зануленных корпусах, так как они автоматически оказываются подключенными к фазе. Именно поэтому категорически запрещается монтаж в нулевой провод любых средств защиты (выключателей или предохранителей), образующих его разрыв при срабатывании.

Для того чтобы уменьшить вероятность повреждения током при обрыве нулевого провода, через каждые 200 м линии выполняются повторные заземления. Такие же меры принимаются на концевых и вводных опорах. Сопротивление каждого повторного заземлителя не должно превышать 30 Ом, а общее сопротивление всех таких заземлений – 10 Ом.

Зануление и заземление: в чем разница?

Главная разница между занулением и заземлением заключается в том, что при заземлении безопасность обеспечивается быстрым снижением напряжения тока, а при занулении – отключением участка цепи, в котором случился пробой тока на корпус или любую другую часть электроустановки, при этом в промежуток времени между замыканием и прекращением подачи питания происходит снижение потенциала корпуса электроустановки, в противном случае через тело человека пройдет разряд электрического тока.

Электрическая схема заземления и зануления

Требования к заземлению (занулению)

Во всех электроустановках, где нейтраль изолирована, обязательно выполняется защитное заземление, а также должна предусматриваться возможность быстрого поиска замыканий на землю.

Если устройство имеет глухозаземленную нейтраль, а его напряжение менее 1000 В, то можно применять только зануление. При оснащении такой электроустановки разделяющим трансформатором, вторичное напряжение должно быть не более 380 В, понижающим – не более 42 В. При этом от разделяющего трансформатора разрешается питать только один электроприемник с номинальным током защитного устройства не более 15 А. В этом случае запрещается заземление или зануление вторичной обмотки.

Если нейтраль трехфазной сети до 1000 В изолирована, то такие электроустановки должны иметь защиту от пробоя в результате повреждения изоляции между обмотками трансформатора и пробивной предохранитель, который монтируется в нейтраль или фазу со стороны нижнего напряжения.

Что и когда необходимо заземлять

Защитное заземление и зануление электроустановок необходимо проводить в следующих случаях:

  1. При переменном номинальном напряжении свыше 42 В и постоянном номинальном свыше 110 В особо опасных и наружных установках.
  2. При переменном напряжении свыше 380 В и постоянном свыше 440 В в любых электроустановках.

Заземляются корпуса электроустановок, приводы аппаратов, каркасы и металлические конструкции распределительных шкафов и щитов, вторичные обмотки трансформаторов, металлические оболочки кабелей и проводов, кабельные конструкции, шинопроводы, короба, тросы, стальные трубы электропроводки и электрооборудование, расположенное на движущихся частях механизмов.

В жилых и общественных зданиях обязательно подлежат занулению (заземлению) электроприборы мощностью свыше 1300 Вт. Если подвесные потолки выполнены из металла, то необходимо заземлить все металлические корпуса осветительных приборов. Ванны и душевые поддоны, выполненные из металла, должны соединяться с водопроводными трубами металлическими проводниками. Делается это для выравнивания электрических потенциалов. Для заземления корпусов кондиционеров воздуха, электроплит и других электроприборов, мощность которых превышает 1300 Вт, применяется отдельный проводник, присоединяемый к нулевому проводнику сети питания. Его сечение и сечение фазного провода, проложенного от распределительного щита, должны быть равными.

Для выравнивания электрических потенциалов ванну следует обязательно замкнуть на водопроводные трубы

С полным перечнем оборудования, требующего заземления или зануления, а также устройств, где наоборот, допускается пренебречь этими защитными мероприятиями, можно ознакомиться в ПУЭ (Правилах устройства электроустановок). Здесь же можно найти все основные правила заземления электроустановок.

Устройство заземления и зануления — это весьма ответственная работа. Малейшая ошибка в расчетах или пренебрежение, казалось бы, одним незначительным требованием может привести к большой трагедии. Выполнять заземление обязаны только люди, имеющие необходимые знания и опыт работы.

Для безопасности использования электроустановок в современной электрике применяется различное защитное оборудование и конструкции, благодаря которым перегрузки, короткие замыкания или попадание рабочей части оборудования под напряжение не приносят вреда человеку. Основной защитой при работе с электрифицированным оборудованием служит заземление и зануление. Эти два варианта отличаются друг от друга способом монтажа, а также применяются для разных типов электрооборудования. Чтобы узнать, в чем заключается разница зануления и заземления, нужно ознакомиться с их принципом работы и особенностями установки.

Заземление и зануление имеют разные способы монтажа, но служат одной цели – обеспечение электробезопасности

Зачем нужно зануление и заземление

Сегодня существует большое количество различных приборов и инструментов, основная задача которых – это обеспечение безопасности при работе с электроустановками. Если возникают какие-либо неполадки, то наиболее опасным последствием неисправности может стать попадание напряжения на металлические части или корпус оборудования.

В зависимости от силы тока, человек может получить повреждения различной степени тяжести. К примеру, при 25 мА может возникнуть паралич мышц, который будет препятствовать попытке прервать контакт с поверхностью, находящейся под напряжением. Если сила тока, прошедшего через изоляцию, равна от 50 до 100 мА, то контакт с ней приведет к серьёзным повреждениям, таким как нарушение циркуляции крови в организме или даже летальному исходу.

Чтобы избежать вышеописанных ситуаций, при работе с электроустановками используют различные приспособления, соответствующие правилам общепринятой техники безопасности.

Обязательным условием эксплуатации электрооборудования является защитное заземление и зануление электроустановок, которые предотвращают поражение током при нарушении изоляции установки.

Чтобы понимать, в чем разница между этими приспособлениями, нужно знать, что собой представляет каждое из них.

Под понятие заземления попадают конструкции, соединяющие установки, которые используют электроэнергию, с землей. Благодаря этому при прикосновении к поверхности, находящейся под напряжением, полученный человеком заряд сводится к минимуму.

Используют данный способ только в электрооборудовании с изолированной нейтралью. Благодаря соединению земли с корпусом установки, при повреждении изоляции ток должен уходить по заземляющей части из-за меньшего сопротивления.

Заземление частного дома

Еще одна функция, выполняющаяся заземлением – это увеличение аварийного тока замыкания. Это необходимо, чтобы защитное электрическое устройство срабатывало во время попадания нетоковедущих частей под напряжение. Обусловлено это тем, что установке заземления, которое имеет достаточно высокий уровень сопротивления, может быть недостаточно тока замыкания. Такая ситуация опасна тем, что несмотря на аварийное состояние оборудования, защита не срабатывает и опасность поражения рабочего персонала остается высокой.

Заземляющее устройство по своему строению представляет собой один или целую группу проводников, которые соединяют токопроводящие элементы с землей. Существует несколько основных типов заземления:

  1. Рабочий тип. Основное предназначение – обеспечение бесперебойной работы электрооборудования как при штатном режиме функционирования, так и при аварийном.
  2. Защитный тип. Предназначен для обеспечения безопасности при работе с электроустановками. Главной причиной возникновения опасности в оборудовании является пробой токоведущего провода на рабочую поверхность или корпус.
  3. Грозозащитный тип. Главное предназначение – отвод разряда молнии, попавшего в разрядник или молниеотвод.

Кроме разделения на типы, заземляющие устройства отличаются в следующем:

  • Искусственно изготовленное заземление. Данный вид конструкций изготавливается специально для обеспечения защиты от напряжения. Состоят они из таких элементов, как провода и стержни из металла, трубы некондиционного типа, стальные уголковые приспособления.
  • Естественное заземление. К этой категории относятся конструкции, изготовленные из металла, но изначально не предназначенные для обеспечения защиты от напряжения. Обычно в качестве естественного заземления используют обсадные трубы, трубопровод, сооружения из железобетона.

Опознавательный знак заземления

Стоит отметить, что естественный вид заземления используют при соблюдении определенных правил. Основное из них – это запрет на эксплуатацию конструкций, которые предназначены для передачи горючих жидкостей или газов. Также для вышеупомянутой цели не подходят проводники, сделанные из алюминия или трубы, поверхность которых покрыта антикоррозийным слоем изоляции.


Зануление отличается от заземления как по предназначению, так и по принципу монтажа. Подключают данную систему защиты к металлическим деталям или корпусу вместо заземления, которые в нормальном режиме работы не проводят электрический ток. Подключают зануление к нейтрали, используемой источником пониженного трехфазного напряжения. Также оно может монтироваться и при помощи генератора однофазного напряжения, а именно подключают к заземленному выводу.

Зануление – один из вариантов защиты от поражения электрическим током

Главная задача зануления – защита рабочего персонала за счет своевременного срабатывания коммутационного автоматического оборудования. Принцип работы заключается в создании искусственного короткого замыкания во время пробоя изоляции и попадания тока на рабочую часть оборудования. Благодаря возникшему КЗ, срабатывают следующие устройства защиты:

  • предохранитель;
  • современные системы защиты от короткого замыкания.

Разница зануления и заземления, как правило, заключается в монтаже и использовании вместо более простого и надежного способа при эксплуатации оборудования, в котором присутствует глухо заземленная нейтраль. Но перед тем как приступить к монтированию данного устройства защиты, нужно учесть, что ток короткого замыкания, который будет создан при помощи нулевого провода, должен быть достаточно высоким, чтобы защитное приспособление срабатывало со 100% вероятностью.

Если же его не будет достаточно для срабатывания автоматического выключателя или разрыва плавкой вставки, то это приведет к возникновению напряжения на всех остальных частях электрооборудования, на которые раньше не попадал ток. Такая ситуация может привести к большой опасности для жизни рабочего персонала и повлиять на производственный процесс.

Подключение зануления к автомату

Для монтажа зануления необходимо соблюдать некоторые правила, обеспечивающие бесперебойную и безопасную работу электроустановок. К примеру, строго запрещается устанавливать какое-либо коммутирующее оборудование в нулевой провод, так как его разрыв может привести к появлению тока в местах с занулением.

Видео по теме

О фазе, ноле, заземлении, гальванической развязке, пути тока рассказывается в данном видео.

Исходя из описанной выше информации, можно узнать, чем отличается заземление от зануления. Так как обе установки предназначены для обеспечения безопасности на рабочем месте, и их разница хорошо видна в способе установки и принципе работы.

Заземление, при возникновении напряжения на рабочей поверхности, быстро уводит ток в землю. Зануление, в отличие от предыдущего варианта, самостоятельно напряжение не снижает, но провоцирует срабатывание автоматических приборов и разрывает участок цепи.

В зависимости от вида электрооборудования и места его расположения используют такой способ защиты из вышеуказанных вариантов, который позволит максимально обезопасить здоровье и жизнь персонала.

© 2024 softlot.ru
Строительный портал SoftLot